RATE ENHANCEMENTS DUE TO AQUEOUS SULFURIC ACID IN Mn (III) OXIDATION OF CERTAIN PURINE ALKALOIDS - KINETIC ANALYSIS OF ACIDITY FUNCTIONS

A. Ramakrishna Reddy1, 2, J. Prasad3, M. Bhooshan2, 3, K. C. Rajanna3, * A. Panasa Reddy3 and M. Thirumala Chary1

1Department of Chemistry, Osmania University, Hyderabad- 500007(T.S.) India
2Department of Chemistry, JNTUH College of Engineering Hyderabad - 500007(T.S.) India
3Maturi Venkata Subba Rao (MVSR) Engineering College, Hyderabad - 501510(T.S.) India
*Corresponding Author: kcrajannaou@yahoo.com

ABSTRACT

Kinetics and mechanism of purine-based alkaloids like caffeine, theobromine, and theophylline, have been studied using Mn (III) sulfate as an efficient reagent in an aqueous sulfuric acid medium. Progress of the reaction is for the oxidation of xanthine alkaloids has been studied at 520 nm wavelength (λ). Reactions indicated first-order kinetics in [Mn (III)], and [xanthine alkaloid]. Reaction rates accelerated with an increase in acid concentration and temperature. Eyring’s and Gibbs- Helmholtz equations were used for the calculation of activation parameters. Observed rate enhancements herein, are analyzed by Zucker-Hammett, Bunnett, and Bunnett-Olsen criteria of acidity functions. The results found as per Bunnett-Olsen criteria of acidity functions, the most plausible mechanism has been proposed by considering the participation of H2O molecule, as a proton transferring agent in RD (Rate Determining) step.

Keywords: Mn (III) Sulfate Oxidation, Purine-based Alkaloids, Acid Catalysis, Zucker-Hammett, Bunnett, Bunnett-Olsen, Acidity Functions.

INTRODUCTION

Manganese (Mn) is a versatile d-block element (with the electronic configuration [Ar]4s23d5), which exhibits variable oxidation states from +2 to +7, and the largest being +7. Mn (II) in MnSO4, Mn (IV) in MnO2, and Mn (VII) in KMnO4 are most stable, and these compounds are easily available in any laboratory as desktop chemicals.1 However, Mn compounds with oxidation states +3, +5, and +6 could also be easily prepared in laboratory.2-4 A perusal of literature revealed several research studies comprising kinetics and mechanism of oxidation using Mn (III) because it is a strong oxidizing agent in HClO4 (1.0 M) with a potential E° (Mn(III)/Mn(II)) = + 1.51 V. It is known to disproportionate rapidly into Mn (IV), and Mn (II) according to the equilibrium,

2 Mn (III) ⇌ Mn (IV) + Mn (II)

It is stabilized by using either excess of Mn (II) or several ligands like sulfate (SO42−), fluoride (F−), pyrophosphate (P2O7−), acetate (CH3COO−), and EDTA.5-7 The addition of ligands like pyrophosphate (PyP) reduced the potential from E° (Mn(III)/Mn(II)) = + 1.51 V to 1.15V, while EDTA reduced to 0.824 V.7,8 The striking importance of Mn (III) as an efficient reagent in electron transfer reactions,5-13 coupled with the biological importance of xanthine alkaloids as Many of these alkaloids find their use as stimulants and vasodilators,14-16 we have taken up the present kinetic study, involving the Mn (III) sulfate oxidation of purine based alkaloids viz., caffeine (CAF), theophylline (TPL), and theobromine (TBR) in aqueous sulfuric acid (H2SO4) solutions. Nevertheless, few publications were found in literature comprising the oxidation of xanthine alkaloids under different conditions.17-20
Mn (III) OXIDATION OF CERTAIN PURINE ALKALOIDS

A. Ramakrishna Reddy et al.

EXPERIMENTAL

Materials and Methods

The chemicals (Analytical grade), used in this experimental study, were procured from a local vendor (Avra, SDS, Aldrich, Hyderabad). The HPLC graded Acetonitrile was used and double distilled water used in this study was distilled over alkaline KMnO₄ and acid dichromate in an all-glass apparatus. Purine-based alkaloids like caffeine (CAF), theophylline (THP), and theobromine (THB), were procured from Aldrich, E-Merck or SD fine chemicals. Manganic sulfate (Mn (III) sulfate) was prepared afresh according to the procedure described by Ubbelhode in Vogel’s practical book.²¹

Kinetic Method of Following the Reaction

Known amounts of the substrate (Purine alkaloid), sulfuric acid (H₂SO₄), a suitable amount of solvent (water) in one flask; and Mn (III)sulfate is another flask were taken, which were clamped in a thermostatic (constant temperature) bath. After attaining thermal equilibrium, the reaction was commenced when the required amount of Mn (III) was mixed instantaneously and thoroughly to the other contents already taken in the flask. The flask was given a black coating from the outside so that photochemical effects were avoided. Small portions of the reaction mixture were taken, in regular intervals, into a cuvette and absorbance was measured using a thermostatically controlled laboratory visible spectrophotometer. Absorbance (A) or optical density (O.D) values were in agreement with ±3% error.

Reaction Stoichiometry and Products of Oxidation

In a typical experiment, xanthine alkaloid (0.01 mole substrate) and Mn (III)sulfate (0.05 mole reagent) were mixed and made up to 50 mL in an aqueous acidic medium, and allowed to react for about 24 hours at 313K. Aliquots (5.0mL) of the unreacted [Mn (III)] were quenched in known excess of standard Fe (II) solution and titrated with standard Ce (IV) solution using ferroin as an indicator. Obtained results showed that 1.0 (One) mole of xanthine alkaloid utilized 2.0 (Two) moles of Mn (III). In another similar reaction set, after completion, contents of the reaction mixture were extracted using 50 mL of CH₂Cl₂, washed with 40 mL of water. The separated CH₂Cl₂ layer was dried over Magnesium Sulphate, allowed till the solvent got evaporated, and upon purification of the obtained residue by flash column chromatography (SiO₂, ethyl acetate-hexane 1:2) to give uric acid derivatives as the end product, as characterized by NMR and Mass spectroscopic studies. These products are in agreement with the results reported earlier from our laboratory.¹⁷,¹⁸

1,3,7-Trimethyl Uric Acid (An Oxidation Product of Caffeine)

(m/z) 210; NMR: δ 3.35(N-CH₃); δ 3.41(N-CH₃), δ 3.73(N-CH₃); δ 13.49(O-H)

3,7-Dimethyl Uric Acid (An Oxidation Product of Theobromine)

(m/z) 196; NMR: δ 9.45(N-H); δ 3.24(N-CH₃), δ 3.73(N-CH₃); δ 13.49(O-H)

¹⁷,¹⁸ Mn (III) OXIDATION OF CERTAIN PURINE ALKALOIDS

A. Ramakrishna Reddy et al.
1,3-Dimethyl Uric Acid (An Oxidation Product of Theophylline)
(m/z) 196: NMR: δ 3.35(N-CH₃); δ 3.41(N-CH₃); δ 13.43(O-H); δ 13.92(N-H)

Detection of Free Radicals
Participation of free radical intermediates in the present study, oxidation of xanthene alkaloids by Mn (III), was supported by free radical-induced vinyl polymerization which afforded a white precipitate and viscous mass (polymer) upon the addition of acryl amide or acrylonitrile to the reaction mixture at elevated temperatures and inert atmosphere while blank experiments by excluding either Mn (III) or xanthene alkaloid did not indicate any sign of polymer formation.

Determination of the Order of Reaction and Salient Kinetic Features
When [Substrate] << [Mn (III)], the Plots of [ln (A₀/At)] Vs Time were linear with no intercept shows first-order kinetics with respect to [Mn (III)], according to the following first order rate equation:

\[\ln \left(\frac{A_0}{A_t} \right) = (k') t \]

Where \(A_0 \) = Absorbance at time of initiating the reaction; \(A_t \) = Absorbance at a given time “t”.

Further, \(A_0 \), \(A_t \) is proportional to the initial concentration of manganic sulfate ([Mn (III)]₀), to the concentration of Mn (III) at a given time “t” ([Mn (III)]ₜ) respectively. Few representative plots are shown in Fig.-1 to 3. Pseudo-first-order rate constants (k’) were obtained from the slopes of these plots, which were determined for all the xanthene alkaloids used in this study at constant acidity, and temperature. Further, the (k’) values for the various concentration of substrates were obtained and compiled in Table -1, which indicated constancy in the value of (k’) / [Substrate]. This observation suggested that order in [Substrate] is also one.

![Fig.-1: Plot of ln (A₀/At) Vs Time for Oxidation Caffeine by Mn (III)](image1)

\[10^3[Mn(III)] = 3.6 \text{ mol/dm}^3; 10^4 [\text{Caff}] = 3.6 \text{ mol/dm}^3; [\text{H}_2\text{SO}_4] = 0.2 \text{ mol/dm}^3; \text{Temp} = 298K \]

![Fig.-2: Plot of ln (A₀/At) Vs Time for Oxidation Theophylline by Mn(III)](image2)

\[10^3[Mn(III)] = 3.6 \text{ mol/dm}^3; 10^4 [\text{Theophylline}] = 3.6 \text{ mol/dm}^3; [\text{H}_2\text{SO}_4] = 0.4 \text{ mol/dm}^3; \text{Temp} = 298K \]
Mn (III) OXIDATION OF CERTAIN PURINE ALKALOIDS

A. Ramakrishna Reddy

But, variation of sulfate \([SO_4^{2-}]\) according to the equilibria (7, 8), followed by retardation in the reaction rate according to the equilibria and 5). On the other hand, if disulfato Mn(III) species \([\text{Mn}(\text{SO}_4^{2-})_{2}]^{2-}\) should have decreased with an increase in the concentration of acid \((H_2SO_4)\), then disulfato Mn(III) species \([\text{Mn}(\text{SO}_4^{2-})_{2}]^{2-}\) is the reactive species, the rate should have decreased with an increase in the concentration of acid \((H_2SO_4)\) according to the equilibria (4 and 5). On the other hand, if disulfato Mn(III) species \([\text{Mn}(\text{SO}_4^{2-})_{2}]^{2-}\), or trisulfato Mn(III) species \([\text{Mn}(\text{SO}_4^{2-})_{3}]^{3-}\), is the active species, the reaction rate according to the equilibria (7, 8), followed by retardation in the reaction rate according to the equilibria (9, 10). But, variation of sulfate \([SO_4^{2-}]\) over a wide concentration range (from 0.001 to 0.01 mol/dm\(^3\)) did not affect pseudo first-order rate constant \((k')\) to any notable extent, while an increase in acid concentration increased the rate of oxidation significantly.

Table 1: Effect of Variation of [Substrate] on Pseudo First Order Rate Constants \((k')\) at 298 K

<table>
<thead>
<tr>
<th>[Substrate] ((\text{mol/dm}^3))</th>
<th>Caffeine</th>
<th>Theophylline</th>
<th>Theobromine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>1.45</td>
<td>1.59</td>
<td>1.32</td>
</tr>
<tr>
<td>3.60</td>
<td>2.89</td>
<td>3.17</td>
<td>2.64</td>
</tr>
<tr>
<td>5.40</td>
<td>4.36</td>
<td>4.75</td>
<td>4.02</td>
</tr>
<tr>
<td>7.20</td>
<td>5.80</td>
<td>6.38</td>
<td>6.72</td>
</tr>
<tr>
<td>9.00</td>
<td>7.30</td>
<td>8.05</td>
<td>7.62</td>
</tr>
</tbody>
</table>

Table 2: Effect of Variation of [Additive] on Pseudo First-order Rate Constant \((k'/min)\) at 298 K

<table>
<thead>
<tr>
<th>Additive</th>
<th>[Additive] ((\text{mol/dm}^3))</th>
<th>Caffeine</th>
<th>Theophylline</th>
<th>Theobromine</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) H_2SO_4</td>
<td>0.2</td>
<td>28.9</td>
<td>31.7</td>
<td>26.4</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>33.0</td>
<td>34.2</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>38.3</td>
<td>39.4</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>43.3</td>
<td>42.5</td>
<td>35.8</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>46.4</td>
<td>45.3</td>
<td>37.8</td>
</tr>
<tr>
<td>(B) Na_2SO_4</td>
<td>0.2</td>
<td>28.3</td>
<td>21.9</td>
<td>23.9</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>27.5</td>
<td>20.4</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>26.2</td>
<td>19.2</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>28.0</td>
<td>21.0</td>
<td>23.6</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

Based on their kinetic and spectroscopic results earlier investigators \(^5,9-13\) suggested that Mn(III) in aqueous sulfuric acid contain different types of species like \([\text{Mn}(\text{H}_2\text{O}_6)^{3+}\) or \([\text{Mn}^{3+}\), mono hydroxy Mn(III) species \((\text{Mn}(\text{H}_2\text{O}_5)(\text{OH})^2+)\) or \((\text{Mn}(\text{OH})^2+)\), dihydroxy Mn(III) species \((\text{Mn}(\text{H}_2\text{O}_4)(\text{OH})^2+\) or \((\text{Mn}(\text{OH})^2+)\), and monosulfato Mn(III) species \((\text{Mn}(\text{SO}_4)^-\) or \((\text{Mn}(\text{H}_2\text{O}_4)\text{SO}_4)^-\) disulfato Mn(III)species \((\text{Mn}(\text{SO}_4)^3+)\), and trisulfato Mn(III)species \((\text{Mn}(\text{SO}_4)^3+)\), according to the following equilibria:

\[
\text{Mn}^{3+} + \text{H}_2\text{O} \rightleftharpoons [\text{Mn}(\text{OH})]^{2+} + \text{H}^+ \quad (4)
\]
\[
[\text{Mn}(\text{OH})]^{2+} + \text{H}_2\text{O} \rightleftharpoons [\text{Mn}(\text{OH})]^{3+} + \text{H}^+ \quad (5)
\]
\[
[\text{Mn}(\text{OH})]^{3+} + \text{H}_2\text{SO}_4 \rightleftharpoons [\text{Mn}(\text{SO}_4)]^{2-} + 2\text{H}_2\text{O} \quad (6)
\]
\[
[\text{Mn}(\text{SO}_4)]^{2-} + \text{SO}_4^{2-} \rightleftharpoons [\text{Mn}(\text{SO}_4)]^{3-} \quad (7)
\]
\[
[\text{Mn}(\text{SO}_4)]^{2-} + \text{SO}_4^{2-} \rightleftharpoons [\text{Mn}(\text{SO}_4)]^{3-} \quad (8)
\]
\[
[\text{Mn}(\text{SO}_4)]^{2-} + \text{H}_2\text{SO}_4 \rightleftharpoons [\text{Mn}(\text{SO}_4)]^{3-} + 2\text{H}^+ \quad (9)
\]
\[
[\text{Mn}(\text{SO}_4)]^{3-} + \text{H}_2\text{SO}_4 \rightleftharpoons [\text{Mn}(\text{SO}_4)]^{3-} + 2\text{H}^+ \quad (10)
\]
not alter the reaction rate to any significant extent, ruling out the possibility of either disulfato Mn(III) species ([Mn(SO\textsubscript{4})\textsubscript{2}]) or trisulfato Mn(III) species ([Mn(SO\textsubscript{4})\textsubscript{3}]) as the reactive species. Based on the foregoing discussions together with the highly significant observed rate enhancements (Table-2) with an increase in acidity, we conclude that monosulphato Mn(III) ([Mn(SO\textsubscript{4})+]) species are active species, which is also following equilibrium(6). Thus, a plausible mechanism for the oxidation of caffeine, theophylline, and theobromine comes out as shown in Scheme-2.

![Scheme-2: Acid catalyzed Mn(III) Oxidation of Xanthine Alkaloids](image)

Acid Catalysis and Acidity Functions

The dependence of rate constant (k') in dilute acid solutions, when [acid] < 0.10 mol/dm3, is generally interpreted as a function of pH, i.e., pH= -log[H+]. Zucker- Hamett, Bunnett, and Bunnett-Olson developed various acidity functions to correlate the dependence of rate constant (k') in highly acidic solutions when [acid] ≥ 0.100 mol/dm3. Accordingly, in the present study, the observed rate accelerations (Table-2) in different Bronsted acid concentrations were characterized by the following plots.

Zucker- Hamett plots: log k vs H\textsubscript{2}O; log k vs log [acid]
Bunnett plots: log (k + H\textsubscript{2}O) vs log a\textsubscript{w}; (log k + log [acid]) vs log a\textsubscript{w}
Bunnett-Olsen plots: (log k + H\textsubscript{2}O) vs (log a + log [H+] + log H+) vs (log a + log [H+])

All the above plots were linear with characteristic slopes and show good to excellent correlation coefficients(R2) lies in the range of 0.995 to 0.980 (Figs.-3 to 9). Observed slopes of Zucker- Hamett (m and m'), Bunnett (ω and ω'), and Bunnett-Olsen (φ, or φ*) plots about this study are presented in Table-3, which were helpful to suggest the participation of water molecule and its significance in the rate-determining step of the mechanism by using the guidelines compiled in Appendix-I.

Table-3: Acidity Function Plots (Xanthine Derivatives) in Different Acid Media

<table>
<thead>
<tr>
<th>Compound</th>
<th>Theory/Plot</th>
<th>Parameter</th>
<th>H\textsubscript{2}SO\textsubscript{4}</th>
<th>HClO\textsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
<td>R2</td>
</tr>
<tr>
<td>Theobromine</td>
<td>Zucker-Hammett - I</td>
<td>m</td>
<td>0.128</td>
<td>0.976</td>
</tr>
<tr>
<td></td>
<td>Zucker-Hammett - II</td>
<td>m*</td>
<td>-0.108</td>
<td>0.983</td>
</tr>
</tbody>
</table>
Mn (III) OXIDATION OF CERTAIN PURINE ALKALOIDS

A. Ramakrishna Reddy et al.

Fig.-3: Plot of ln (A_0/A) Vs Time for Oxidation Theobromine by Mn(III)

10^3[Mn (III)] = 3.6 mol/dm^3; 10^3 [Theobromine] = 3.6 mol/dm^3; [H_2SO_4] = 0.8 mol/dm^3; Temp= 298 K

Data presented in Table-2 reveal that plots (Zucker-Hammett) of log k vs [H_0], and log k vs log [Acid] is linear for all the substrates but none of them indicated ideal unit slopes suggesting water molecule participation in the rate-determining step. At the same time, Bunnett’s slopes gave unassumingly high slopes. However, Bunnett-Olsen’s slopes are somewhat in the range of suggesting H_2O (water) molecule participation either as a nucleophile or as a H^+ (proton) transferring reagent in the rate-determining step, as shown in Scheme-2.

Appendix-I: Summary of Zucker-Hammett, Bunnett and Bunnett-Olsen’s Hypothesis

<table>
<thead>
<tr>
<th>Different Acidity Functions and Kinetic Plots</th>
<th>Slope Value</th>
<th>Function of Water Molecule in the RD Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zucker-Hammett (H_0) Plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log k vs H_0</td>
<td>(m) = 1.00</td>
<td>H_2O molecule is not involved</td>
</tr>
<tr>
<td>log k vs log [Acid]</td>
<td>(m') = 1.00</td>
<td>H_2O molecule may involve</td>
</tr>
<tr>
<td>Bunnett Plots</td>
<td>(ω) = -2.5 to 0.0</td>
<td>H_2O not involved</td>
</tr>
<tr>
<td>[log (k + H_0)] vs log a_{H_2O}</td>
<td>(ω) = +1.2 to 3.3</td>
<td>H_2O as a nucleophilic agent</td>
</tr>
<tr>
<td>Bunnett Plots</td>
<td>(ω*) < (-2)</td>
<td>H_2O as a nucleophilic agent</td>
</tr>
<tr>
<td>(log k – log [acid]) vs log a_{H_2O}</td>
<td>(ω*) > (-2)</td>
<td>H_2O as a proton abstracting agent</td>
</tr>
<tr>
<td>Bunnett-Olsen Plots (Applicable to weakly basic solutions)</td>
<td>(φ) = -0.34 to 0</td>
<td>H_2O molecule is not involved</td>
</tr>
<tr>
<td>(log k + H_0) vs (H_0 + log [H^+])</td>
<td>(φ) = +0.18 to 0.47</td>
<td>H_2O as a nucleophilic agent</td>
</tr>
<tr>
<td>Bunnett-Olsen Plots</td>
<td>(φ*) = -0.34 to 0</td>
<td>H_2O molecule is not involved</td>
</tr>
</tbody>
</table>
Mn (III) OXIDATION OF CERTAIN PURINE ALKALOIDS

A. Ramakrishna Reddy et al.

<table>
<thead>
<tr>
<th>(applicable to moderately basic solutions)</th>
<th>(φ²) = +0.18 to 0.47</th>
<th>H₂O as a nucleophilic agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>log k vs (H₀ + log [H⁺])</td>
<td>(φ²) > 0.47</td>
<td>H₂O as a proton transfer agent</td>
</tr>
</tbody>
</table>

Fig-4: Zucker- Hammett’s Plot log k’ vs log[H₂SO₄]
10⁶[Mn(III)] = 3.6 mol/dm³; 10⁴[Caff] = 3.6 mol/dm³; Temp = 298K

Fig-5: Zucker- Hammett’s Plot log k’ vs (H₀)
10⁶[Mn(III)] = 3.6 mol/dm³; 10⁴[Caff] = 3.6 mol/dm³; Temp = 298K

Fig-6: Bunnett’s Plot log k’ vs (log a)
10⁶[Mn(III)] = 3.6 mol/dm³; 10⁴[Caff] = 3.6 mol/dm³; Temp = 298K

Mn (III) OXIDATION OF CERTAIN PURINE ALKALOIDS

A. Ramakrishna Reddy et al.
The rate law for the mechanism at constant acidity comes out as,

\[
\frac{-d[Mn(III)]}{dt} = k[Mn(III)][Substrate]
\]

(Where Substrate = Caffeine, theophylline or theobromine)

\[1458\]
The observed kinetics in agreement with the above rate law at any given temperature and acidity. According to Eyring’s equation, $\Delta G^\#$ (free energy of activation) at different temperatures was calculated. The as-obtained ($\Delta G^\#$) values were used to obtain enthalpy ($\Delta H^\#$) and entropy of action ($\Delta S^\#$) from Gibbs-Helmholtz plot (Fig.-10) using Gibbs-Helmholtz equation.

Effect of Structure on Enthalpy and Entropy Changes

$\Delta S^\#$ (entropy of activation) gives help to know that whether the reactants are bonded to each other, or not (i.e., molecularity of RD step in a reaction). Negative values and positive values of $\Delta S^\#$ indicate that decrease in entropy is often associated with an associative mechanism and an increase in entropy associated with a dissociative mechanism respectively when a transition state is formed. An insight into the activation parameters data presented in Table-4 indicated that entropy of activation is negative for Mn (III) oxidation of caffeine, theophylline and theobromine in both sulfuric and perchloric acids. This observation suggests an associative mechanism followed by greater solvation (water molecule participation) in the transition state. On the basis foregoing negative magnitude of entropy of activation, together with the slopes of Bunnett-Olsen’s plots, it can be concluded that water participates in the slow step as a proton transfer reagent through hydration in the transition state.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Temp (K)</th>
<th>(k) (dm3/mol/min)</th>
<th>$\Delta G^#$ (kJ/mol)</th>
<th>$\Delta S^#$ (J/K/mol)</th>
<th>$\Delta H^#$ (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeine</td>
<td>273</td>
<td>1.75</td>
<td>65.4</td>
<td>21.2</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>283</td>
<td>1.88</td>
<td>67.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>1.98</td>
<td>70.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>2.08</td>
<td>71.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theophylline</td>
<td>273</td>
<td>6.75</td>
<td>62.3</td>
<td>11.0</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>283</td>
<td>7.05</td>
<td>64.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>7.43</td>
<td>66.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>7.68</td>
<td>67.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theobromine</td>
<td>273</td>
<td>6.30</td>
<td>62.5</td>
<td>16.2</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>283</td>
<td>6.88</td>
<td>64.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>7.08</td>
<td>66.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>7.38</td>
<td>68.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSION

Mn (III) sulfate has been found as an efficient reagent for the oxidation of xanthine alkaloids like caffeine, theophylline, and theobromine in an aqueous sulfuric acid medium. A reaction followed overall second-order kinetics, order concerning [Mn (III)], [xanthine alkaloid] is ‘1’ respectively. Observed rate enhancements herein, are characterized by Zucker-Hammett, Bunnett, and Bunnett-Olsen criteria of acidity.
functions. The results of a study of Bunnett-Olsen criteria of acidity functions, the most plausible mechanism has been proposed by considering the participation of water (H$_2$O) as a proton transferring agent in RD (rate-determining) step. Observed negative values of ΔS^\neq indicated greater solvation in the transition state.

ACKNOWLEDGEMENT
The authors would like to thank Professor T. Navaneeth Rao (former VC, O.U), and Prof. P.K. Saiprakash (Former Dean, Faculty of Science, O.U, and Head, Dept. of Chemistry (O.U) for constant encouragement. The authors are grateful to the authorities of JNTUH, Hyderabad, and MVSR Engineering College, Nadergul, Hyderabad for constant encouragement, support and facilities.

REFERENCES
26. L. Zucker, L.P. Hammett, *Journal of the American Chemical Society*, **61**, 2785(1939), https://doi.org/10.1021/ja01265a066
27. L. Zucker, L.P. Hammett, *Journal of the American Chemical Society*, **61**, 2791(1939), https://doi.org/10.1021/ja01265a067
28. J. P. Bunnett, *Journal of the American Chemical Society*, **83**, 4956(1961), https://doi.org/10.1021/ja01485a019
29. J. P. Bunnett, *Journal of the American Chemical Society*, **83**, 4968(1961), https://doi.org/10.1021/ja01485a020