WOUND HEALING BIOACTIVITY OF *Curcuma Longa Linn*

Wardatul Husna Irham¹ and **Rini Hardiyanti**²,³,⁴,⃝
¹Department of Pharmacy, Universitas Sains Cut Nyak Dhien Langsa, Indonesia
²Department of Chemistry, Universitas Sumatera Utara, Medan, Indonesia
³Corresponding Author: rinihardiyanti@usu.ac.id

ABSTRACT

Traditional people of Sumatera Utara, Indonesia, mostly used *Curcuma Longa Linn* as a wound medicine. This research aims to see the wound healing bioactivity of *Curcuma Longa Linn*. Identify *Curcuma Longa Linn* content with the phytochemical screening; the displayed results contain alkaloid, terpenoid/steroid, phenolic, and saponin. FTIR analysis indicated the presence of secondary metabolite. The presence of alkaloids relieved due to the NH stretching peaks at 1579.56 cm⁻¹, terpenoid due to the CH group peak at 2926.58 cm⁻¹, 2106.17 cm⁻¹, and reinforced with peaks at 971.15 cm⁻¹ and 871.49 cm⁻¹. O-H stretching peaks at 3316.33 cm⁻¹, 1515.34 cm⁻¹, 971.15 cm⁻¹ were indicated polyphenols. Antibacterial test using Escherichia coli, Pseudomonas aeruginosa and *Staphylococcus aureus* the result of Antibacterial test shown the secondary metabolite of *Curcuma Longa Linn* has high antibacterial activity. This compound play a role in increasing collagen synthesis early, which can function to restore wound tissue structure and support faster wound healing.

Keywords: Wound Healing Bioactivity, *Curcuma Longa Linn*, Phytochemical Screening, FTIR Analysis, Antibacterial Activity.

INTRODUCTION

Wounds are a type of skin disease that can easily happen to anyone, whether minor or serious injuries, such as punctures, sharp cuts, or surgical injuries¹, the impact of hard objects, heat shocks, or animal bites. The wound on the skin is the occurrence of damage to the skin tissue and skin tissue². The process of wound healing occurs in 4 phases (Table-1), i.e.:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Hemostasis</td>
</tr>
<tr>
<td></td>
<td>Vasoconstriction</td>
</tr>
<tr>
<td></td>
<td>Platelet aggregation</td>
</tr>
<tr>
<td></td>
<td>Leucocyte migration</td>
</tr>
<tr>
<td>Second</td>
<td>Inflammatory</td>
</tr>
<tr>
<td></td>
<td>Neutrophil release</td>
</tr>
<tr>
<td></td>
<td>Phagocytosis</td>
</tr>
<tr>
<td></td>
<td>Removal of microbes</td>
</tr>
<tr>
<td>Third</td>
<td>Proliferation</td>
</tr>
<tr>
<td></td>
<td>Collagen synthesis</td>
</tr>
<tr>
<td></td>
<td>Fibroblast proliferation</td>
</tr>
<tr>
<td></td>
<td>Agiogenesis</td>
</tr>
<tr>
<td></td>
<td>Granulation</td>
</tr>
<tr>
<td>Fourth</td>
<td>Maturation</td>
</tr>
<tr>
<td></td>
<td>Epithelialization</td>
</tr>
<tr>
<td></td>
<td>ECM remodeling</td>
</tr>
<tr>
<td></td>
<td>Tensile strength</td>
</tr>
<tr>
<td></td>
<td>Scar formation</td>
</tr>
</tbody>
</table>

Traditional people in Sumatera Utara Indonesia used plants, especially *Curcuma longa Linn* as wound healing. Research on *Curcuma longa Linn* as a medicine for various diseases has been widely carried out⁴, like diabetes⁵, anti-inflammation anti cancer⁶,⁷, antioxidant, anti-microbial, anti-Alzheimer.⁸ *Curcuma longa Linn* contains curcumin, a phenolic compound as a main content⁴. In addition, *Curcuma longa Linn*...
longa Linn also contains saponin and triterpenoid.9 This research aims to see the bioactivity wound healing of Curcuma Longa Linn from Sumatera Utara Indonesia.

![Curcumin Structure](image)

EXPERIMENTAL

Material and Methods
Curcuma Longa Linn sample was cleaned, thinly sliced, dried and mashed into powder. The sample methanol extract was prepared using the maceration method about 24 hours. Extract were collected, than carried out phytochemical screening tests, FTIR test and anti-bacterial test.

Phytochemical Screening Test
Phytochemical screening test aims to identify the chemical compound contained. Alkaloid identification is made by Wagner, Mayer, and Dragendorff methods,10,11 To identify Flavonoid using ethyl acetate, Terpenoid/steroid test using Ce (IV) sulfate, phenolic identification using Iron (III) chloride, and Saponin identification using hot water.12,13

FTIR Analysis
The FTIR spectra of Curcuma Longa Linn extract were scanned using a 2000 FTIR spectrophotometer (PerkinElmer; Waltham, MA, U.S.A.), which was inserted into the instrument, added with KBr IR content of 950 mg and crushed in a mortar until homogeneous. FTIR spectra were scanned in the middle infrared region of 4000-400 cm\(^{-1}\) with a resolution of 4 cm\(^{-1}\) and the number of scans was 32.14,15

Antibacterial Activity
The antibacterial activity of Curcuma Longa Linn extract was tested by agar diffusion method. Pre-sterilization using alcohol 70\%. The bacteria used in this antibacterial test are Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.4 Amoxycillin was used as control, each inoculum was applied into an agar nutrient medium by using a cotton bud. Then the sample incubated at 35±2°C for 24 hours and the clear zone was measured.4,16,17

RESULTS AND DISCUSSION

Phytochemical Screening Test
Results of phytochemical screening test can be seen in Table-2 and Figure-1.

<table>
<thead>
<tr>
<th>Secondary metabolite</th>
<th>Reagent</th>
<th>Result</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloid</td>
<td>Mayer</td>
<td>+</td>
<td>Yellow deposits18</td>
</tr>
<tr>
<td></td>
<td>Bouchardat</td>
<td>+</td>
<td>Reddish brown deposits18</td>
</tr>
<tr>
<td></td>
<td>Dragendorff/ Wagner</td>
<td>+</td>
<td>Brownish red deposits18</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>Acetic Acid, FeCl(_3)</td>
<td>-</td>
<td>No red purple solution18</td>
</tr>
<tr>
<td>Phenolic</td>
<td>FeCl(_3)</td>
<td>+</td>
<td>Blackish blue solution18,19</td>
</tr>
<tr>
<td>Saponin</td>
<td>Aquadest</td>
<td>+</td>
<td>A lot of froth18</td>
</tr>
<tr>
<td>Terpenoid /Steroid</td>
<td>Ce(SO(_4))(_2)</td>
<td>+</td>
<td>red color17,19</td>
</tr>
</tbody>
</table>

Table-2 shows that Curcuma Longa Linn contains alkaloid, and contains a lot of phenolic, saponin and terpenoid.9 Alkaloid, Phenolic, Saponin and Terpenoid are the various of phytochemical compound that
had therapeutic value at wound healing process.20,21 The previous research have proven that these secondary metabolites act as antimicrobial, antioxidant which accelerates wound healing and skin regeneration.22,23

![Image: Phytochemical Screening of Curcuma Longa Linn](image)

\textbf{Fig.-2: Phytochemical Screening of Curcuma Longa Linn} (a) before (b) after (c) terpenoid test

The presence of these secondary metabolites in \textit{Curcuma Longa Linn} is also proven by analysis FTIR. Figure 2 is the analysis FTIR result of \textit{Curcuma Longa Linn} and the peak value is represented in table 3.

![Image: FTIR Analysis of Curcuma Longa Linn](image)

\textbf{Fig.-3: FTIR Analysis of Curcuma Longa Linn}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Peak Value (cm-1) & Functional Group & Vibration \\
\hline
871.49 & C-H & Rocking \\
971.15 & C-H & Rocking \\
1033.46 & C-O & Streching \\
1129.72 & C-O & Streching \\
1263.69 & C-O & Streching \\
1438.60 & CH\textsubscript{2} & Bending \\
1515.34 & C=C & Aromatic streching \\
1579.56 & N-H & Bending \\
2106.17 & -CH\textsubscript{2} & Asymmetric streching \\
2926.58 & CH\textsubscript{3} & Asymmetric streching \\
3316.33 & O-H & Streching \\
\hline
\end{tabular}
\end{table}

The presence of alkaloids relieved due to the NH stretching peaks at 1579.56 cm-1, terpenoid due to the CH group peaks at 2926.58 cm-1, 2106.17 cm-1, and reinforced with peaks at 971.15 cm-1 and 871.49 cm-1. O-H stretching peaks at 3316.33 cm-1, 1515.34 cm-1, 971.15 cm-1 were indicate polyphenols.27
This study also proves that *Curcuma Longa Linn* plays a role in wound healing with antibacterial tests. Figure-3 shows *Curcuma Longa Linn* antibacterial activity and Table-4 describes the diameter of the clear zone of *Curcuma Longa Linn*.¹

![Antibacterial Activity](image)

Table-4: Describes Diameter of the Clear Zone of Curcuma Longa Linn¹

<table>
<thead>
<tr>
<th>Concentration</th>
<th>E. coli</th>
<th>P. Aeruginosa</th>
<th>S. Aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ppm</td>
<td>7.61 ± 0.15</td>
<td>8.22 ± 0.12</td>
<td>7.58 ± 0.11</td>
</tr>
<tr>
<td>100 ppm</td>
<td>7.83 ± 0.11</td>
<td>8.70 ± 0.14</td>
<td>8.74 ± 0.09</td>
</tr>
<tr>
<td>1000 ppm</td>
<td>9.08 ± 0.18</td>
<td>10.37 ± 0.18</td>
<td>10.43 ± 0.11</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>20.28 ± 0.04</td>
<td>12.16 ± 0.08</td>
<td>7.53 ± 0.04</td>
</tr>
</tbody>
</table>

The bacteria used in this test are bacteria that play a role with the wound, i.e. *Escherichia coli*, *Pseudomonas aeruginosa* and *Staphylococcus aureus*. These bacteria are the main cause of open wound infection. Other than also using Amoxicillin as a positive control. Amoxicillin is a lactam antibiotic that works against Gram positive and Gram negative microorganisms; its bactericidal action can be used to treat bacterial infections caused by microorganisms by inhibiting the biosynthesis and repair of bacterial muropeptide walls.²⁸ This study proves that *Curcuma Longa Linn* has good antibacterial activity. Concentration of the sample was in 3 variation, i.e. 10 ppm, 100 ppm and 1000 ppm. This is intended to see if there is an effect of concentration on the anti-bacterial ability. The result showed that at 10 ppm, *Curcuma Longa Linn* had anti-bacterial properties in a moderate category of bacteria *Escherichia coli*, *Pseudomonas aeruginosa* and *Staphylococcus aureus*. The addition of concentration can increase the level...
of anti-bacterial Curcuma Longa Linn. It can be seen the addition of the clear zone at the 100 ppm sample. High category of Curcuma Longa Linn’s anti-bacterial was seen at 1000 ppm. This research succeeded in proving that Curcuma Longa Linn contains the wound healing bioactivity. Alkaloids and terpenoids as astringents and anti-microbes are effective for helping the process of reepithelization of injured tissue by increasing the maturity of collagen tissue in the wound area and increasing the weight of dry granulation tissue and the production of hydroxyproline enzymes. Phenolic compounds play a role in increasing collagen synthesis early, which can function to restore wound tissue structure and support faster-wound healing. Phenolic compound found in Curcuma Longa Linn is curcumin\(^29\). Curcumin has a high antibacterial activity. On the wound healing process, Curcumin works on the inflammation stage, proliferation stage and remodeling.

![Fig.-5: Effect of curcumin treatment on each wound healing stage](image)

REFERENCES

[RJC-6345/2020]