OXIDATION OF DL-METHIONINE, A SULFUR-CONTAINING AMINO ACID BY DIETHYL AMMONIUM CHLOROCHROMATE

Kamla, Pramila Naga, Priyanka Purohit and Vinita Sharma
Chemical Kinetics Laboratories, Department of Chemistry, J.N.V. University, Jodhpur-342 005 (Rajasthan) India

ABSTRACT
Oxidation of DL-methionine (Met), sulphur-containing amino acid by Diethylammonium chlorochromate (DEACC) in dimethylsulphoxide (DMSO) is leading to produce its consecutive sulphoxide. The reaction is of first-order w. r. t. methionine and DEACC. The addition of an acid enhance the reaction rate, the effect of acidity is expressed by the relation $k_{obs} = a + b[H^+]$. The rate of the oxidation of methionine is recorded in 19 non aqueous solvent medium. The effect of solvent medium is was studied in nineteen different organic solvents. The solvent effect is evaluated by the models of Kamlet and Swain multiparametric equation. Importance of the cation solvating powers is predominantly seen in the effects of solvent medium. On the basis of results and discussion a suitable mechanism is proposed.

Keywords: Halochromate, Methionine, Oxidation, Sulfoxide.

INTRODUCTION
Halochromates are used as placid and choosy reagents in synthetic chemistry. DEACC is also such a similar reagent available in the literature for the same purpose. It has been a matter of interest of our group in Jodhpur to study the reactions by halo- and dichromates and has emanated a few reports on similar halochromates. We have not seen any report on the oxidation aspects of Met by DEACC. Met acts differently from other amino acids with various oxidizing reagents as it contains electron-rich sulfur, which oxidizes at ease. As per our previous record of studies with chromates, we are going to report in the present paper the oxidation kinetics of Met by DEACC in DMSO. We are going to propose a suitable mechanism also.

EXPERIMENTAL
Material and Methods
Chromate oxidant is synthesized by the method available in literature, and purity was confirmed by iodometry. Methionine is a commercially available chemical that is used as received. Because of nonaqueous nature of the solvents, para toluene sulfonylic acid is the source of acidity. All the other solvents used are purified by the method of Perrin.

Confirmation of Product Formed
Kinetic conditions are employed for the analysis of the product so formed after the completion of the reactions. It was confirmed by the method available in literature, that sulfoxide is formed by the oxidation of Met with DEACC. Availability of the product, sulfoxide is 95±3% and the oxidation state of chromium is +4, at the ned of reaction after several half-lives.

Experimental Kinetics
The ratio is maintained 1 : 10 or more (Reactant on Oxidant) to achieve the first-order condition. The solvent medium is DMSO except under solvent effect experiments. A decrease in oxidant concentration is followed on a spectrophotometer at a temperature constantly maintained at ±0.1 K and at lambda max 380 nano-meters. This lambda is specific for these reactants and products. k-observed, the rate constants, is

http://doi.org/10.31788/RJC.2021.1456587

This work is licensed under a CC BY 4.0 license.
calculated by a linear graph of time in seconds versus DEACC concentrations for at least up to 4 half-lives. Only those reactions are done with acid, which are studies for acidity effects.

RESULTS AND DISCUSSION

Stoichiometric Determinations
Reactions of Met with DEACC are done under kinetic conditions and form the sulfoxide as the consequent product, therefore in general, the reaction can be symbolized as given below:

\[
\text{Me - S - R + CrO}_2\text{ClO}^-\text{N}^+\text{H}_2\text{Et}_2 \rightarrow \text{Me - S - R + CrOClO}^-\text{N}^+\text{H}_2\text{Et}_2\]

Where \(R = \text{CH}_2\text{CH}_2\text{CH(NH}_2\text{)COOH} \)

The oxidant, DEACC is, undergone a 2 electron change, which is in agreement with some earlier studies by P.C.C. and P.F.C. halochromates\(^{15,16}\). Magnetic vulnerability, E.S.R. and I.R. studies have already shown that both these halochromates are 2 electron oxidants and are reduced to chromium four as oxidation number.

Kinetic Dependence
All the reactions are of unit order w.r.t. oxidant and reductant both. Plots DEACC against time is linear in nature. Rate constants are independent of the starting concentrations of the oxidant. Further, reaction rates increase with the increase in the concentration of reductant. It is evidenced by results recorded in Table-1 and represented by Fig.-1.

Table-1: Rate Constants for the Oxidation of Methionine by DEACC At 298 K

<table>
<thead>
<tr>
<th>(10^3 \text{[DEACC]}) (mol dm(^{-3}))</th>
<th>(10^3 \text{[Met]}) (mol dm(^{-3}))</th>
<th>(10^3 \text{[TsOH]}) (mol dm(^{-3}))</th>
<th>(10^{4} k_{obs}) (mol dm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.10</td>
<td>0.00</td>
<td>2.50</td>
</tr>
<tr>
<td>1.0</td>
<td>0.20</td>
<td>0.00</td>
<td>5.06</td>
</tr>
<tr>
<td>1.0</td>
<td>0.40</td>
<td>0.00</td>
<td>10.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0.60</td>
<td>0.00</td>
<td>15.1</td>
</tr>
<tr>
<td>1.0</td>
<td>0.80</td>
<td>0.00</td>
<td>20.2</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>0.00</td>
<td>25.2</td>
</tr>
<tr>
<td>2.0</td>
<td>0.40</td>
<td>0.00</td>
<td>9.36</td>
</tr>
<tr>
<td>4.0</td>
<td>0.40</td>
<td>0.00</td>
<td>10.8</td>
</tr>
<tr>
<td>6.0</td>
<td>0.40</td>
<td>0.00</td>
<td>9.54</td>
</tr>
<tr>
<td>8.0</td>
<td>0.40</td>
<td>0.00</td>
<td>10.5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.20</td>
<td>0.00</td>
<td>5.13*</td>
</tr>
</tbody>
</table>

* contained 0.001 M acrylonitrile

![Fig.-1: Oxidation of DL-methionine by DEACC: A typical Kinetic Run](image-url)
Induced Polymerisation of Acrylonitrile
The oxidation of Met, in an atmosphere of nitrogen, failed to induce the polymerization of acrylonitrile. Further, the addition of acrylonitrile had no effect on the rate of oxidation (Table-1). Therefore, one-electron oxidation, giving rise to free radicals, is unlikely. We further confirm the absence of free radicals in the reaction pathway, the reaction was carried out in the presence of 0.05 mol dm$^{-3}$ of 2,6-di-t-butyl-4-methylphenol (butylated hydroxytoluene or BHT). It was observed that BHT was recovered unchanged, almost quantitatively.

Effect of Acidity
The reaction was studied at different acidities by adding the varying amount of toluene-p-sulphonic acid (TsOH) to the reaction mixtures. The reaction is catalyzed by hydrogen ions (Table-2). The dependence of hydrogen ion is expressed by the relation; $k_{obs} = a + b \times \left[H^+\right]$. The values of a and b are $2.45\pm0.06\times10^{-4}$ s$^{-1}$ and $4.78\pm0.10\times10^{-4}$ mol$^{-1}$ dm3 s$^{-1}$ are recorded in that order ($r^2 = 0.9984$).

<table>
<thead>
<tr>
<th>[H$^+$]/mol dm$^{-3}$</th>
<th>[DEACC] = 0.001 mol dm$^{-3}$;</th>
<th>[Met] = 1.0 mol dm$^{-3}$;</th>
<th>Temp. = 298 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>2.88</td>
<td>3.51</td>
<td>4.32</td>
</tr>
</tbody>
</table>

On the basis of the acidity effect, it is suggested that the present reaction follows 2 pathways; one depends on acidity, but the other is independent of acid effect. DEACC is protonated by acid and is represented as equation given below:

$$\left[O_2CrClO^{-}N^+H_2Et_2\right] + H^+ \rightleftharpoons left[HOCrOClO^{-}N^+H_2Et_2\right]$$

Effect of Temperature
The rates of oxidation of Met are determined at four different temperatures and the activation parameters were also calculated (Table-3). The log k_2 at different temperatures is linearly related to the inverse of the absolute temperature in all cases (Fig.-2). It indicates the validity of Arrhenius equation.

![Fig.-2: Oxidation of DL-methionine by DEACC: Effect of temperature](image-url)

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>$10^4 k_2$ (dm3 mol$^{-1}$ s$^{-1}$)</th>
<th>ΔH^* (kJ mol$^{-1}$)</th>
<th>$-\Delta S^*$ (J mol$^{-1}$ K$^{-1}$)</th>
<th>ΔG^* (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>288</td>
<td>11.7</td>
<td>51.5±0.2</td>
<td>123±1</td>
<td>87.8±0.2</td>
</tr>
<tr>
<td>298</td>
<td>25.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>51.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>98.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solvent Effect

Rates of oxidation of Met are studied in nineteen organic solvents. Because of the solubility of oxidants in primary and secondary alcohol, the option is restricted. No appreciable reaction is observed with the solvents taken into account. The behavior is almost similar in every medium. The data for rate constants are present in table four.

Table-4: Effect of Solvents on the Oxidation of Methionine by DEACC At 288 K

<table>
<thead>
<tr>
<th>Solvents</th>
<th>10^5 k_{obs} (s$^{-1}$)</th>
<th>Solvents</th>
<th>10^5 k_{obs} (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHCl$_3$</td>
<td>51.3</td>
<td>C$_6$H$_5$CH$_3$</td>
<td>12.0</td>
</tr>
<tr>
<td>1,2-C$_2$H$_4$Cl$_2$</td>
<td>41.7</td>
<td>C$_4$H$_9$COCH$_3$</td>
<td>43.7</td>
</tr>
<tr>
<td>CH$_3$Cl</td>
<td>39.8</td>
<td>Tetrahydrofuran</td>
<td>20.9</td>
</tr>
<tr>
<td>DMSO</td>
<td>117</td>
<td>t-Butylalcohol</td>
<td>22.4</td>
</tr>
<tr>
<td>CH$_3$COCH$_3$</td>
<td>33.9</td>
<td>1,4 - C$_5$H$_4$O$_2$</td>
<td>18.2</td>
</tr>
<tr>
<td>Dimethyl formamide</td>
<td>63.1</td>
<td>1,2- C8H${11}$O$_2$</td>
<td>13.5</td>
</tr>
<tr>
<td>C$_4$H$_9$O</td>
<td>27.5</td>
<td>Carbon Disulphide</td>
<td>5.25</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>46.8</td>
<td>CH$_3$COOH</td>
<td>26.9</td>
</tr>
<tr>
<td>C$_6$H$_6$</td>
<td>14.8</td>
<td>C$_2$H$_5$COOC$_2$H$_5$</td>
<td>17.4</td>
</tr>
<tr>
<td>C6H${12}$</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Except that of carbon disulphide, the rate constants are correlated with Kamlet17 model of LSER., in 18 solvents because of the nonavailability of a full number of data of CS$_2$.

$$\log k_2 = A_0 + \pi^* + b\beta + a\alpha$$ \hspace{1cm} (3)

In this model,
\(\pi^*\) is defined as solvent polarity,
\(\beta\) is defined as hydrogen bond acceptor basicities
\(\alpha\) is the hydrogen bond donor acidity.

\(A_0\) is the intercept term.

It is to be noted here that out of eighteen solvent, twelve are having \(\alpha\) as zero point. The data so correlated by this model of Kamlet tri parametric equation is mentioned below:

$$\log k_2 = -3.65 + 1.50 \pm 0.16 \pi^* + 0.11 \pm 0.13 \beta + 0.30 \pm 0.12 \alpha$$ \hspace{1cm} (4)

\(R^2 = 0.8845; \quad sd = 0.14; \quad n = 18; \quad \psi = 0.37\)

$$\log k_2 = -3.58 + 1.39 \pm 0.17 \pi^* + 0.21 \pm 0.14 \beta$$ \hspace{1cm} (5)

\(R^2 = 0.8337; \quad sd = 0.17; \quad n = 18; \quad \psi = 0.43\)

$$\log k_2 = -3.53 + 1.44 \pm 0.17 \pi^*$$ \hspace{1cm} (6)

\(r^2 = 0.8084; \quad sd = 0.17; \quad n = 18; \quad \psi = 0.45\)

$$\log k_2 = -2.77 + 0.46 \pm 0.31 \beta$$ \hspace{1cm} (7)

\(r^2 = 0.1236; \quad sd = 0.37; \quad n = 18; \quad \psi = 0.96\)

In the above equations, \(n\) represents the data point taking part in the reaction and \(\psi\) represents Exner's mathematical parameters.18

Triparametric equation of Kamlet17 justifies 88% of the data of solvents effect, but as per Exner's18 this correction is not up to the mark. The main role is of solvent polarity, which is explaining alone 80% of the results. Alpha and beta very minor roles in this process.

Therefore, we fit our data in another model of solvent effect given by Swain19 and co-workers. This model is based on cation and anion solvating perception of solvents.

$$\log k_2 = aA + bB + C$$ \hspace{1cm} (8)

In the above equation;
\(A\) is denoted by anion solvating power of the solvent
\(B\) denotes cation solvating power.
Oxidation rates of Met in various solvents are correlated extremely well with Swain equation showing a noteworthy part of cation and anion solvating powers. As compared to anion solvating, cation solvating power is playing a bit more prominent role. 98% of the data are explained by solvent polarity. But correlations separately are not good with A and B. as the solvent polarity is showing a prominent role, we correlate the rate of the reaction with relative permittivity, which is not found to be linear \(r^2 = 0.4781; \text{sd} = 0.30; \psi = 0.74 \).

Solvent studies indicate the presence of a transition state which may be a polar higher degree than the reactant. Moreover, the main part of cation and anion solvating power indicating the presence of a dipolar transition state equal to \(S_N \) reactions. We may also explain the solvent effect with an assumption that DEACC and the complex exist as an ion pair in a nonpolar medium like cyclohexane and be considerably dissociated in more polar solvents.

Mechanism

As per the non-availability of free radical reaction, the one-electron oxidation process may not be possible in this reaction system. The results so obtained are in relation to the fact that electrophilic oxygen is
transferring from DEACC to the sulphur present in Met. This is happening through an intermediate complex shown in equation thirteen. These types of the mechanistic path have also been suggested in the oxidation of sulphides and iodide by IO₄ ion²⁰, and oxidation by H₂O₂.²¹ We can assume and see the electrophilic attack on sulphur of sulphide as a reaction similar to Sn₂. The present solvent effect is also supporting a transition state similar to Sn₂.

It has already been suggested earlier in various reactions by chromium²² six, a cyclic transition state and it may be suggested in this oxidation of Met by DEACC. We may assume that the present cyclic transition state may be in more strain because of the presence of either a single pair of electrons or a -CH₃ group, as shown in reaction fourteen. It has been observed that a cyclic transition state requires a large specific orientation and may be resulted in higher negative entropy of activation than that observed in reaction(Scheme-1).

CONCLUSION

The oxidation of DL-methionine involves a rate-determining electrophilic attack of methionine sulfur at the metal via an intermediate complex. Both deprotonated and protonated forms are reactive oxidizing species.

ACKNOWLEDGEMENT

Thanks are due to the U.G.C., New Delhi financial support and P.N. in the form of UGC-NET-JRF and to P.P. in the form of UGC-BSR Startup grant and Head, Department of Chemistry J.N.V. University, Jodhpur for lab facilities.

REFERENCES

[RJC-6587/2021]