CHEMICAL CONSTITUENTS OF ARTABOTrys ODORATISSIMUS (SEEDS)

Jagdish P. Singh*, Alok K. Singh, Archana Singh and Rakesh Ranjan
1Department of Chemistry, S.G.R.-Post Graduation College, Dobhi, Jaunpur-222149, India.
2Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.
*E-mail: sinharranjan1@gmail.com

ABSTRACT
3-Hydroxy-9-methoxypterocarpan, nonacosanoic acid 2’, 3’-dihydroxypropyl ester, pentacosanoic acid 2,3’-dihydroxypropyl ester and docosanoic acid have been isolated for the first time from the seeds of Artabotrys odoratissimus and identified by spectroscopic data of these natural products and their derivatives.

Key words: 3-Hydroxy-9-methoxypterocarpan and cosanoic acids derivative.

INTRODUCTION
Artabotrys odoratissimus R. Brown, belongs to the family annonaceae which is an evergreen perennial shrub, mostly native of tropical Africa, Eastern Asia and India1. This plant is used in Indian system of medicine for the treatment of vomiting, biliousness and disease of blood and heart. The leaves are reported to contain an anti-fertility principal2. Oil of seeds of the plants are reported to contain antidandruff, anti-itching, anti-thrombin and hair loss preventing activities3. In continuation to our previous communication4, we report here in isolation and identification of four compounds viz; 3-Hydroxy-9-methoxypterocarpan, nonacosanoic acid 2’,3’-dihydroxypropyl ester, pentacosanoic acid 2’, 3’-dihydroxypropyl ester and docosanoic for the first time from this plant.

EXPERIMENTAL
The melting points were measured on a Yazawa hot stage microstage apparatus and are uncorrected. Optical rotations were measured on JASCO DIP-360 Polarimeter (Cell length 5 CM). UV absorption spectra were recorded on JASCO UV/visible spectrophotometer (model no. 7800) while IR on JASCO FT-IR 5300 spectrometer. NMR spectra were recorded on an AMX 300 NMR spectrometer (Bruker, Karlsruhe, Germany).
The seeds of A. odoratissimus were collected from the garden of Banaras Hindu University and then authenticated by Professor. V. K. Joshi, Department of Dravya Guna, IMS, Banaras Hindu University, Varanasi-221005, INDIA.

RESULTS AND DISCUSSION
The milled seeds (1 kg) were extracted with 95% ethanol by cold percolation method, solvent was removed under vacuum at 40°C. The left residue (80 gm) was then fractionated into n-hexane, chloroform, n-butanol and aqueous soluble fraction. The chloroform soluble fraction was chromatographed over silica gel. Elution of column with solvents of increasing polarity resulted in the isolation of four compound viz; 3-hydroxy-9-methoxypterocarpan (25 mg, n-hexane: EtOAc 1:1), nonacosanoic acid 2’, 3’-dihydroxypropyl ester (22 mg, EtOAc), pentacosanoic acid 2-,3’-dihydroxypropyl ester (24 mg, EtOAc : MeOH 9:1, early fraction) and docosanoic acid(20 mg, EtOAc : MeOH 9:1, latter fraction).

ARTABOTrys ODORATISSIMUS (SEEDS) Jagdish P. Singh et al.
Compound 1. \([\alpha]^D_{22} -226^0\) (c, 0.1, CHCl$_3$); MF: C$_{16}$H$_{14}$O$_4$, M$^+$ at m/z 270 (EI-MS); m.p. 127-128$^\circ$C; IR (KBr)ν_{max} 3404, 2949, 1619, 1600, 1499, 1474, 1365, 1281, 1149, 1028, 934, 837, 764 cm$^{-1}$; UV λ_{max} 282, 287 (MeOH) nm; 1H-NMR (CDCl$_3$): δH 7.37 (1H, d, J= 8.3, H-1), 6.54 (1H, d, J= 8.3, H-2), 6.44-6.41 (m, H-4), 5.49 (1H, d, J= 6.0, H-6), 3.67–3.51 (m, H-6a), 7.12 (1H, d, J= 8.7, H-7), 6.56–6.41 (H-8 & H-10), 5.49 (1H, d, J= 6.0, H-6), 3.76 (3H, s, 9-OCH$_3$), 5.59 (br hump, 3-OH); 13C-NMR: δC 132.4 (C-1), 110.1 (C-2), 157.5 (C-3), 103.8 (C-4), 156.8 (C-4a), 66.7 (C-6), 39.7 (C-6a), 119.4 (C-6b), 125.0 (C-7), 106.6 (C-8), 161.2 (C-9), 97.1 (C-10), 160.8 (C-10a), 78.8 (C-11a), 112.6 (C-11b), 55.7 (-OCH$_3$). On the basis of above spectral data the structure of this compound was settled as 3-hydroxy-9-methoxypetrocarpans commonly known as (-) medicarpene. The above spectral values were in good agreement with the reported data in the literature5,6,7.

\[
\text{Compound-1}
\]

Compound 2. \([\alpha]^D_{22} -3.87\) (MeOH + CHCl$_3$, c, 0.10); MF: C$_{32}$H$_{64}$O$_4$, M$^+$ at m/z 512 (EI-MS); m.p 90-91$^\circ$C; IR (KBr)ν_{max} 3425, 2919, 2851, 2363, 1734, 1468, 1179, 1051, 720 cm$^{-1}$; 1H-NMR (CDCl$_3$+ DMSO-d$_6$, 200 MHz): δH 4.04 (2H, t, J=5.3 Hz, H-1'), 3.80 (1H, m, H-2'), 3.48 (2H, m, H-3'), 2.29 (2H, t, J= 7.3 Hz, H-2), 1.56 (6H, brm, H-26,27,28), 1.24 (40H, brs, H-3 to H-22), 0.87 (3H, t, J= 6.0 Hz, CH$_3$); 13C-NMR δC 172.6 (C-1), 68.9 (2'), 64.3 (C-1'), 62.3 (C-3'), 33.1 (C-2), 30.7 (C-28), 28.5 (C-7 to C-27), 28.2 (C-3), 28.0 (C-4), 23.8 (C-5), 21.5 (C-6), 13.1 (CH$_3$). On the basis of above spectral data the structure of compound 2 was established as nonacosanoic acid 2', 3',-hydroxy-propyl ester. The above spectral data are in good agreement with the reported data in the literature8.

\[
\text{Compound-2}
\]

Compound 3. \([\alpha]^D_{22} -3.11\) (MeOH+ CHCl$_3$, c, 0.22); MF: C$_{28}$H$_{56}$O$_4$, FAB-MS: m/z 457 [M+H]$^+$; m.p. 72-74$^\circ$C; IR (KBr)ν_{max} 3225, 1733, 1704, 1389, 725 cm$^{-1}$; 1H-NMR (CDCl$_3$ + DMSO-d$_6$): δH 4.11 (2H, t, J=6.2 Hz, H-1'), 3.80 (1H, m, H-2'), 3.34 (2H, m, H-3'), 2.26 (2H, t, J= 7.3 Hz, H-2), 1.56 (4H, H-23,24), 1.25 (40H, brs, H-3 to H-22), 0.87 (3H, t, J= 6.0 Hz, CH$_3$); 13C-NMR δC 172.2 (C-1), 69.0 (2'), 66.5 (C-1'), 64.5 (C-3'), 32.9 (C-2), 30.7 (C-24), 30.3 (C-6 to C-23), 30.1 (C-3), 25.9 (C-4), 23.7 (C-5), 14.1 (CH$_3$). Thus, the structure of compound 3 was established as pentacosanoic acid 2, 3-dihydroxy-propylester which is in good agreement with the reported data in the literature9.

\[
\text{Compound-3}
\]

ARTABOTRYS ODORATISSIMUS (SEEDS)

Jagdish P. Singh et al.
Compound 4. MF: C\textsubscript{22}H\textsubscript{44}O\textsubscript{2}, M+ at m/z 340; m.p. 70-72\textdegree{}C; IR (KBr)\textit{v}_{\text{max}} 3430, 2919, 2850, 1594, 1468, 1351 cm-1; 325, 311, 297, 283, 269, 255, 241, 227, 213, 199, 185, 171, 157, 143, 129; 1H-NMR \delta_{H} 2.28, (2H, t, J= 7.19 Hz, H\textsubscript{2}-2), 1.60 (2H, m, H-3), 1.25 (36H, brs, H-4 to H-21), 0.87 (3H, t, J=6.2 Hz, H-22); 13C-NMR \delta_{C} 176.1 (C-1), 34.3 (C-2), 25.0 (C-3), 22.7 (C-21), 14.2 (C-22), 29.4 (C-4 to C-20) has suggested it to be docosanoic acid which is consistent with the 13C-NMR data of compound 410.

\begin{center}
\textbf{Compound-4}
\end{center}

ACKNOWLEDGEMENT

R. R. is thankful to UGC for financial assistance.

REFERENCES

(Received: 20 December 2008 Accepted: 28 December 2008 RJC-313)

"I like to see a man proud of the place in which he lives. I like to see a man live so that his place will be proud of him."

- Abraham Lincoln