SIMPLE AND SENSITIVE SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF BICALUTAMIDE IN BULK AND FORMULATIONS

A.Anton Smith*, R. Manavalan and K.Kannan
Department of Pharmacy, Annamalai University, Annamalainagar- 608 002. Tamilnadu, India
* E-mail: auantonsmith@yahoo.co.in

ABSTRACT
A sensitive, extraction, derivatization, evaporation and complexation free, direct spectrophotometric method is developed for the determination of Bicalutamide (BCA) in bulk drugs and pharmaceutical preparation. The optimum conditions for the analysis of the drug are established. The method permits the determination of BCA over a concentration range of 2.5 µg/ml - 12.5 µg/ml. Detection and quantification limits are calculated. The obtained results showed good recoveries of 98.279 with relative standard deviation of 0.35. The repeatability and reproducibility of BCA in methanol is determined. Precision and accuracy of the developed method is used for recovery study. The proposed method is applicable for the assay of BCA investigation in dosage forms and the results are in good agreement.

Keywords: Bicalutamide, Spectroscopy, Determination

INTRODUCTION
Bicalutamide (BCA) (+)–N–[4–cyano–3–(trifluoromethyl)phenyl]–3–[(4–fluorophenyl) sulfonyl]–2–hydroxyl–2–methyl propanamide is a bifunctional alkylating agent, non steroidal which is used for the treatment of prostate cancer, competitively inhibits the action of androgens by binding to cytosol androgen receptors in the target tissue, prostatic carcinoma is known to be androgen and are removes the source of androgen. When bicalutamide is combined with luteinizing hormone releasing hormone analogue therapy, the suppression of serum testosterone induced by the LHRH analogue is not affected. However in clinical trials with bicalutamide as a single agent for prostate cancer it leads to risosin serum testosterone and estradiol have been noted. It competes with testosterone and dihydrotestosterone for binding sites on the prostate and other sensitive tissues. It does not bind as tightly as to the receptors located outside the central nervous system and causes little increase in testosterone levels with little agonist activity.

The structural formula of BCA by AM 1 method is illustrated below:

It is well absorbed in oral administration. Co-administration of bicalutamide with food has no clinically significant effect on rate or extent of absorption, highly protein bound (96%), undergoes stereo specific metabolism. Medicinal chemistry is concerned with the understanding of chemical and biological mechanism by which the action of drug molecule can be explained. It also tries to establish relation between chemical structure and biological activity and to link the later to the physical properties of the
drug molecules. The discovery of a new and biologically important active compound usually gives rise to an extended search for closely related compounds of similar more effective, more specific or even opposite activity. The S-isomer (inactive) is metabolized primarily by glucuronidation. The R-isomer (active) also undergoes glucuronidation but is predominantly oxidized to an inactive metabolite followed by glucuronidation. Both the parent metabolite glucuronides are eliminated in the urine and feces. The S-enantiomer accounting for about 99% of total steady state plasma levels.

It is administered at dosages of 50 mg tablet once daily. Action will be started the same time as treatment with an LHRH analogue. The adverse effect of Bicalutamide includes hot flashes, breast tenderness or pain and gynaecomastia. The literature reveals that various methods for the determination of BCA in biological fluids and pharmaceutical formulations. Among these methods are UV – visible Spectrophotometry and HPLC method using the Fluorescence detector UV detector in plasma were reported. The undifferentiated enantiomers in the human plasma were first collected on ODS column and then separated them by ES-OVM column. BCA was synthesized enantiometrically pure (S)-(+)BCA and (R)(-)-BCA and separated by chiralcel OJ column without reporting the chromatographic conditions. The comparison of LC and SFC separations on cellulose derived chiralcel OD and amylase derived chiralpak AD chiral stationary phases using BCA and several other chiral compounds. Recemic mixture of BCA by forming diastereomers on a Spherisorb-NH2 column. Evaluation of different CSPs for separation of enantiomers of BCA and its impurities. The objective of the present study is to develop a simple, precise, accurate and economic analytical method with a better detection range for the estimation of BCA in bulk drugs and in pharmaceutical formulations. No extraction, derivatization, or evaporation step, no complexation agent, and no baleful chemicals are involved in the proposed method, thereby decreasing the time and the error in the quantization. This paper describes a simple, reliable method for assaying bicalutamide by Spectrophotometer which has been used to analyze the bulk drugs and formulation of bicalutamide.

EXPERIMENTAL

Apparatus
A double-beam spectrophotometer Shimadzu UV 1601 PC model was used.

Chemicals and reagents
Bicalutamide pure sample was supplied by M/s Cipla Ltd, India as gift sample and used as such. Pharmaceutical dosage forms were procured from local pharmacies: Calutide 50 (50 mg Bicalutamide/Tablet) was manufactured from M/s Cipla Ltd, Bangalore, India. Methanol used was spectro grade from S.D fine chemicals Ltd, India.

Standard solutions

Stock Solution
A methanolic primary stock solution of bicalutamide (100 mg) was prepared in methanol and stored in the dark in a refrigerator. All the measurements were performed at room temperature. The standard solutions were prepared by the proper dilution of the primary stock solution with methanol to obtain working standard. For linearity study, serial dilutions were made for bicalutamide in the range of 2.5 to 12.5 µg/ml concentrations were prepared by diluting the stock solution with methanol. The absorbances of these solutions were fitted in the calibration curve to calculate the accuracy and precision of the method.

For Formulation
The average weight of the tablets were determined by weigh 20 tablets and powdered. Tablet powder equivalent to 25 mg of BCA was weighed and transferred to a 100 ml volumetric flask. About 60 ml of methanol was added and sonicated for 15 minutes complete dissolution of drugs, made up to the volume with methanol and filtered through filter paper. Dilutions were made with methanol to attain a concentration of 10 µg/ml and spectra was recorded. Six replicates of analysis were carried out with sample weighed individually. The average weight of the tablet was found to be 0.1874 g.
METHOD VALIDATION

Linearity
The method was validated according to ICH Q2B guidelines23 for validation of analytical procedures in order to determine the linearity, sensitivity, precision, and accuracy of the analyte23. For BCA, five-point calibration curves were generated with the appropriate volumes of the working standard solutions for UV methods. The linearity was evaluated by the least-squares regression method using unweighted data.

Precision and Accuracy
Precision is the degree of repeatability of an analytical method under normal operational conditions. The precision and accuracy were determined with standard quality control samples (in addition to calibration standards) prepared in triplicate at different concentration levels covering the entire linearity range. The precision of the assay was determined by repeatability (intraday) and intermediate precision (inter-day) and reported as RSD\% for a statistically significant number of replicate measurements23. The intermediate precision was studied by comparing the assays on three different days and the results are documented as the standard deviation and RSD\%. Accuracy is the percent of analyte recovered by assay from a known added amount. Data from nine determinations over three concentration levels covering the specified range were obtained.

LOD and LOQ
The limit of detection (LOD) is defined as the lowest concentration of an analyte that an analytical process can reliably differentiate from background levels. In this study, LOD and LOQ were based on the standard deviation of the response and the slope of the corresponding curve using the following equations

\[
\text{LOD} = 3s/m; \quad \text{LOQ} = 10s/m
\]

Where \(s\), the noise of estimate, is the standard deviation of the absorbance of the sample and \(m\) is the slope of the related calibration graphs.

The limit of quantification (LOQ) is defined as the lowest concentration of the standard curve that can be measured with an acceptable accuracy, precision, and variability23. The values of LOD and LOQ were given in Table 1.

Stability
The stability of bicalutamide in methanolic solution was studied by the UV method. Sample solutions were prepared in triplicate and stored at 4 and 25°C for 12, 24, 26, 48, 60, and 72h. The stability of these solutions was studied by performing the experiment and looking for the change in the spectrophotometric pattern compared with freshly prepared solutions.

Recovery study
Recovery of the analyte of interest from a given matrix can be used as a measure of the accuracy or the bias of the method. The same range of concentrations as employed in the linearity studies was used. To study the accuracy, precision, and reproducibility of the proposed method and dosage forms, recovery experiments were carried out using the standard addition method. These studies were performed by the addition of known amounts of pure BCA to the pre-analyzed tablet formulation and the mixtures were analyzed using the proposed techniques. After parallel analyses, the recovery results were calculated using the related calibration equations.

RESULTS AND DISCUSSION

The development of a simple, rapid, sensitive, and accurate analytical method for the routine quantitative determination of samples will reduce unnecessary tedious sample preparations and the cost of materials and labor. BCA is a UV-absorbing molecule with specific chromophores in the structure that absorb at a particular wavelength and this fact was successfully employed for their quantitative determinations using the UV spectrophotometric method. The absorption spectrum of BCA in methanolic solution is shown in Fig. 1.
Calibration curves

Calibration curve data was constructed in the range of the expected concentrations of 2.5 – 12.5 μg/ml. Beer’s law was obeyed over this concentration range. The regression equation was found to be $y = 57.36x - 0.0048$. The correlation coefficient (r) of the standard curve was found to be greater than 0.9995. The stock solutions and working standards were made in methanol. The λ_{max} of the drug for analysis was determined by taking scans of the drug sample solutions in the entire UV region.

The characteristic of the calibration plot is presented in Table 1 and the analytical characteristics and necessary validation parameters for the UV techniques for BCA is presented.

Performing replicate analyses of the standard solutions was used to assess the accuracy, precision, and reproducibility of the proposed methods. The selected concentration within the calibration range was prepared in methanol and analyzed with the relevant calibration curves to determine the intra- and interday variability. The intra- and interday precision were determined as the RSD %. The precision, accuracy, and reproducibility of the results given in table 1 and 2 demonstrate a good precision, accuracy, and reproducibility.

The proposed methods can be successfully applied for BCA assay in tablet dosage forms without any interference. The assay showed the drug content of this product to be in accordance with the labeled claim (Table 2). The recovery of the analyte of interest from a given matrix can be used as a measure of the accuracy of the method (Table 2). In order to check the accuracy and precision of the developed method and to prove the absence of interference by excipients, recovery studies were carried out after the addition of known amounts of the pure drug to various pre-analyzed formulations of all drugs. The application of this procedure is explained in the experimental section. The obtained results demonstrate the validity and accuracy of the proposed method for the determination of all drugs in tablets (Table 2). These results reveal that the developed method have an adequate precision and accuracy, and consequently, can be applied to the determination of BCA tablet in pharmaceuticals without any interference from the excipients.

The stability of BCA in methanolic solution was evaluated to verify that any spontaneous degradation occurs when the samples were prepared. Fig. 2 shows that the stability profile at 4 and 25°C for 12, 24, 48, 60, and 72 h, the results were expressed as a percentage of the drugs remaining. The obtained data showed that the sample solutions were stable during 48 h when stored at 4 and 25°C with a degradation of less than 5%. BCA was less stable at 25°C with degradation of 4.8% after 72 h.

CONCLUSIONS

A spectrophotometric method for quantifying Bicalutamide in formulation samples has been developed and validated. The assay is selective, precise, accurate and linear over the concentration range studied. Bicalutamide can be estimated as low as 3.95×10^{-2} μg/ml in formulation could be precisely quantified and LOD was approximately 1.16×10^{-2} μg/ml in formulation. In summary, the proposed method can be used for the drug analysis in routine quality control.

ACKNOWLEDGEMENT

The author would like to Cipla Ltd., Bangalore for the generous gift of Bicalutamide and many thanks to Mr. E.Raja for his support towards this research work.

Table 1: Regression data of the calibration lines for quantitative determination of BCA by UV method.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Bicalutamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured wavelength (λ_{max})</td>
<td>272</td>
</tr>
<tr>
<td>Linearity range, μg/ml</td>
<td>2.5 – 12.5</td>
</tr>
<tr>
<td>Slope</td>
<td>57.36</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.0048</td>
</tr>
<tr>
<td>Correlation coefficient (r)</td>
<td>0.999</td>
</tr>
<tr>
<td>SE of slope</td>
<td>10.14×10^{-2}</td>
</tr>
<tr>
<td>SE of intercept</td>
<td>6.5×10^{-4}</td>
</tr>
<tr>
<td>Parameters</td>
<td>Bicalutamide</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Labelled claim, mg</td>
<td>50</td>
</tr>
<tr>
<td>Amount found, mg*</td>
<td>49.82</td>
</tr>
<tr>
<td>RSD %</td>
<td>2.87</td>
</tr>
<tr>
<td>Added, %</td>
<td>50, 75, 100</td>
</tr>
<tr>
<td>Found, %**</td>
<td>97.98, 98.39, 98.45</td>
</tr>
<tr>
<td>Recovery, %</td>
<td>98.27</td>
</tr>
<tr>
<td>RSD, % of recovery</td>
<td>0.35</td>
</tr>
</tbody>
</table>

*Mean of six determinations, ** three determinations

Figure 1: Absorption Spectrum of Bicalutamide.

Figure 2: Regression analysis of the calibration curve for Bicalutamide showed a linear relationship between the intensity of absorbance and the concentration, with correlation coefficients higher than 0.9995 in all the curves assayed.
Figure 3: Curve of the BCA in methanolic solution stability stored at 4 and 25°C during 12, 24, 48, 60, and 72 h.

REFERENCES

(Received: 28 February 2009 Accepted: 6 March 2009 RJC-339)

We proudly inform to all our Authors and Readers that, our journal...