RASĀYAN *J. Chem.*

Vol.2, No.4 (2009), 890-894 ISSN: 0974-1496 CODEN: RJCABP

SYNTHESIS AND BIOLOGICAL ACTIVITY OF NOVAL IMIDAZOLINE DERIVATIVES

P.Shanmugasundaram*, B.Vijayakumar, G.Devadass, A.Appi Reddy and M.Vijey Aanandhi.

School of Pharmaceutical Sciences, Vels University, Chennai 600 117, Tamilnadu, India E-mail:mvaanandhi@gmail.com

ABSTRACT

A new series of N substituted methyl 2 - phenyl imidazoline were synthesized from the reaction of phenyl imidazoline and methylene chloride. The structure of the compound was confirmed by IR, ¹H NMR. These compounds were evaluated for anticonvulsant activity and antibacterial activity. Among the compound 3b & 3d displayed significant anticonvulsant activity. Among the compound 3a & 3c displayed significant antibacterial activity.

Keywords: Phenyl imidazoline, anticonvulsant activity, antibacterial activity

INTRODUCTION

Compounds containing imidazoline moiety have shown a wide variety of activity and many of them have gained wide acceptance in clinical practice. $^{1\text{-}14}$ The β - adrenergic activity of biogenic amines epinephrine and nor epinephrine is highly specific and susceptible to structural changes. Compared to this α -adrenergic agonist and antagonists do not have such structural constraints. Some of the most active α -sympathomimetic agents contain imidazoline moiety as a pharmacophore which includes naphazoline 15 , metazoline 16 and domazoline 17 . These compounds are mainly used in ophthalmic preparation and as nasal decongestants. Among the α -adrenergic blockers clonidine 18 has been used as an effective antihypertensive agent. Nowadays there is newer evidence that the centrally acting antihypertensive exhibit their activity through adrenergic receptors and imidazoline preferring receptors which are present in brain and peripheral nervous system. Another α -adrenergic blocker, tolazoline 19 has been used in the treatment of peripheral vascular disease as a vasodilator.

Analogs containing imidazoline are also found in antihistaminic. Substitution of imidazoline as one of the basic nitrogen has resulted in clinically effective anti-histaminic antazoline²⁰. Structural modification of resulted in phentolamine²¹ with complete change in biological activity and showing α -adrenergic blockade, which has been reported to be superior to tolazoline. Analogs like moxonidine²² are also found in post myocardial infraction, which is also used to treat atherosclerosis. The structural modification of resulted in clibenzoline²³ is an antiarrhythmic agent. Another adrenergic antagonist tetrahydrozoline²⁴ has been used in treatment of nasal inflammation. Some of compounds are mainly used in treatment of chronic pelvic, behavioral disorder lofexidine²⁵ has been used an opiate dependence syndrome. Cirazoline²⁶ is used to inhibit the vasoconstrictor by calcium entry. Considering this, it is quite evident that imidazoline moiety offers immense possibility for preparation of therapeutically effective newer imidazoline analogs.

EXPERIMENTAL

The reagents/ chemical / solvents used during the course of these studies were obtained from Merck (India), SD fine and Sigma Aldrich, Laboratories and were of the laboratory grade. The solvents were purified by distillation before their use. Silica Gel G used for thin layer chromatography was of CDH brand Iodine chamber and UV lamps were used for visualization of TLC spots. Whatmann filter paper (No. 1 England) was used for filtration (Vacuum ordinary).

Solvent system TLC: Benzene: ethanol (4:1) used for TLC.

¹H NMR spectra were recorded on 300MHZ Bruker instruments. IR spectra were recorded on Shimadzu FT/IR instrument. Theoretical value and Physical properties are given in table − 1.

N substituted methyl 2 - phenyl imidazoline

1-(Chloromethyl)-2-phenyl-4, 5-dihydro-1H-imidazole (2)

A mixture of 2– Phenyl imidazoline(1) (0.01 mol) in dimethyl formamide (8 ml) was cooled to 0°C - 5°C and add sodium hydride (0.085gm) maintain the temperature below 5°C stirr and added methylene chloride with DME and maintain the temperature at 60°C upto completion of addition. The mixture was then allowed to cool for over night at room temperature. The obtained precipitate was filtered and finally recrystallized from acetone. IR (KBr): 790, 1031, 1271, 1344, 1569, 2961 CM⁻¹. HNMR (CDCl₃): δ 3.67(- N= C), 2.91 (- N - C), 4.64 (-Cl), 7.29 – 7.62 (-C).

1-(phenoxy methyl)-2-phenyl-4, 5-dihydro-1H-imidazole (3a)

A mixture of 1-(Chloromethyl)-2-phenyl-4, 5-dihydro-1H-imidazole (0.004mole) and phenol (0.05mol) in ethanol (10ml) containing 0.75gm of K_2CO_3 . The mixture was refluxed for 3 hours. Finally the residue was evaporated and recrystallized with hexane. IR (KBr): 1031, 1050, 1271, 1344, 1569, 3487 CM^{-1} . HNMR (CDCl₃): δ 2.91 (- N - C), 3.67(- N= C), 5.20 (-N-C), 6.77 - 7.15 (-O-C-), 7.29 - 7.62 (-C).

N-((2-phenyl-4, 5-dihydroimidazol-1-yl) methyl) benzenamine (3b)

A mixture of 1-(Chloromethyl)-2-phenyl-4, 5-dihydro-1H-imidazole (0.004mole) and aniline (0.05mol) in ethanol (10ml) containing 0.75gm of K_2CO_3 . The mixture was refluxed for 3 hours. Finally the residue was evaporated and recrystallized with hexane. IR (KBr): 779, 1342, 1690, 3251 CM⁻¹. HNMR (CDCl₃): δ 2.91 (- N - C), 3.67(- N= C), 4.0 (-N-CH₂), 6.43 (-N-C), 6.58(-N-C), 7.29 - 7.62 (-N-C).

1-(ortho phenoxymethyl)-2-phenyl-4, 5-dihydro-1H-imidazole (3c)

A mixture of 1-(Chloromethyl)-2-phenyl-4,5-dihydro-1H-imidazole (0.004mole) and ortho cresol (0.05mol) in ethanol (10ml) containing 0.75gm of K_2CO_3 . The mixture was refluxed for 3 hours. Finally the residue was evaporated and recrystallized with hexane.

IR (KBr): 1031, 1050, 1271, 1344, 1569, 2339, 3251 CM⁻¹. HNMR (CDCl₃) HNMR (CDCl₃): δ 2.91 (-N - C), 3.67(- N= C), 5.20 (-N-C), 6.77 - 7.15 (-O-C-), 7.29 - 7.62 (-C).

N Chloro-((2-phenyl-4, 5-dihydroimidazol-1-yl) methyl) benzenamine (3d)

A mixture of 1-(Chloromethyl)-2-phenyl-4,5-dihydro-1H-imidazole (0.004mole) and 3- Chloro aniline (0.05mol) in ethanol (10ml) containing 0.75gm of K_2CO_3 . The mixture was refluxed for 3 hours. Finally the residue was evaporated and recrystallized with hexane. IR (KBr): 760, 780, 1342, 1650, 3251 CM⁻¹. HNMR (CDCl₃): δ 2.91 (- N - C), 3.67(- N= C), 4.0 (-N-CH₂), 6.43 (-N-C), 6.58(-N-C), 7.29 – 7.62 (-N-C), 7.27 (-Cl)

Anticonvulsant activity

In this present study the anticonvulsant activity of synthesized novel imidazoline derivatives were evaluated by Maximal Electroshock Seizure method. Male Swiss albino rat (150 – 200gm) was treated with 3a- 3d (100mg/kg) orally using oral feeding needle. CMC treated animal served as control and phenytoin (25mg/kg, orally) was administered as standard drug to a group of 6 animals. The anticonvulsant activity of test drug was determined by applying MES 150mA for 0.2 seconds using corneal electrodes. Six animals were used in each group. The pharmacological effects were noted for myoclonic flexion, extension, clonus, stupor and recovery/ mortality. Similarly for the standard drug, values were noted. The results are given in table (2)

Anti microbial activity

All the compound (3a-3d) was screened (doses 25, 50, 100 µg/ml for their antimicrobial activities against the gram –ve bacteria Escherichia coil & Salmonella typhi and gram +ve bacteria Bacillus Subtillis &

Staphylococcus Aureus using standard antibiotic drug as a control. The biological activities of these compounds have been evaluated by using disc diffusion method. Dimethyl formamide was used as a solvent. Activities were determined by using the cultivated Disc and the inhibition zones were measured in mm and results are shown in table (3).

Scheme-1

RESULTS AND DISCUSSION

Anticonvulsant activity

Synthesized compounds were evaluated for their anticonvulsant activity by Maximal Electroshock Seizure method. Phenytoin was used as standard. Among the compound 3b & 3d displayed significant anticonvulsant activity.

Anti microbial activity

The compound 3a & 3c in the concentration of 100µg/ml was found to posses good antibacterial activity against Escherichia coil & Salmonella typhi respectively. The compound 3c & 3a in the concentration of 100µg/ml was found to posses good antibacterial activity against Bacillus Subtillis & Staphylococcus Aureus respectively.

Table -1: Characterization data for compounds 3a – 3d

Compound	R	Mol. formula	Mol. wt	M.P(°C)	R.F value	Yield (%)
3a	O C ₆ H ₅	$C_{16}H_{16}N_2O$	252	208	0.74	73.45

3b	NH C ₆ H ₅	$C_{16}H_{17}N_3$	251	237	0.49	68.72
3c	$O C_6H_5$	$C_{16}H_{16}N_2O$	252	204	0.64	64.48
3d	NH C ₆ H _{5Cl}	C16H17N3Cl	285	179	0.45	69.24

Table 2: Anticonvulsant activity of the compounds 3a-3d

Group	Compounds	Dose	Flexion in	Extension in	Clonus in	Stupor in sec	Moratal
		(mg/kg)	sec	sec	sec		ity
I	Control	2% CMC	4.1 ± 0.36	11.7 ± 0.55	2.9 ± 0.51	120.0 ± 0.95	0
II	Phenytoin	25	1.9 ± 0.31	7.0 ± 0.31	1.4 ± 0.22	90.0 ± 0.92	0
			$a^{@}$	$a^{@}$	$a^{@}$	$a^{@}$	
III	3a	100	2.1 ± 0.31	7.9 ± 0.28	2.3 ± 0.20	95.0 ± 0.62	0
			a*	a [#]	a [#]	a [#]	
IV	3b	100	1.7 ± 0.25	7.7 ± 0.30	1.8 ± 0.22	89.0 ± 0.57	0
			a [#]	a*b*	b*	$a^{@}$	
V	3c	100	2.0 ± 0.27	8.9 ± 0.31	2.1 ± 0.22	101.0 ± 0.59	0
			$a^{@}$	a*b [*]	a*b*	$a^{\#}b^{*}$	
VI	3d	100	1.8 ± 0.33	7.4 ± 0.31	1.5 ± 0.21	92.0 ± 0.54	0
			a*	a@b*	b*	$a^*b^\#$	

One way ANOVA followed by Dun nest's 'T' test (Multiple comparison test) Values are expressed in mean $\pm SEM$ (n=4)

- a. Group I Vs group II, III, IV, V and VI
 - b. Group II Vs group III, IV, V and VI
- (a) = P < 0.001, # = P < 0.01, * = P < 0.05.

Table -3: Antimicrobial activity of the compounds 3a - 3d

Organism	Conc. of compounds	Antimicrobial activity (Zone of inhibition in mm)					
2 8	μg/ml	Compd 3a	Compd 3b	Compd 3c	Compd 3d		
	25	13	9	13	11		
E.coli	50	16	11	15	15		
	100	19	18	17	19		
	Standard	25	24	25	25		
	25	15	11	17	15		
Salmonella typhi	50	19	11	19	18		
	100	22	15	22	20		
	Standard	24	24	26	25		
	25	16	13	16	14		
Bacillus Subtillis	50	18	16	17	18		
	100	21	19	23	21		
	Standard	25	24	25	24		
	25	16	14	12	13		
Staphylococcus	50	18	15	15	18		
Aureus	100	23	18	22	22		
	Standard	25	24	25	25		

REFERENCES

- 1. Shi-fa Wang, Takashi Furuno, Zhi Chang, Journal of Wood Sciences, 49(4), 371 376 (2003).
- 2. Hen-Sheng Zhong, Zhao Yang, Ke Jingxi Kuang, *Huagong*, **17**(12), 690-693 (2002).
- 3. P. Mc Cormark, P. Jones, S. Rowland, *J. Rapid Communication in Mass Spectrometry*, **16**(7), 705-712 (2002).
- 4. Houkai Teng, Surfang Wang, Ymmin Liu, Xioxia Jin, Patent No: CN 155697.
- 5. Dominique Baum, Gerhard Wilhelm Bielenberg,; Patent No: WO -EP52468, 20041007 (2004).
- 6. Nicolas Venteclef, Raphaclee Guilard, Issadou, *Marc. Bio.chemical Pharmacology* **69**(**7**), 1041-1048 (2005).
- 7. Georage, D. Prell, Patent No: US 6777394.
- 8. Risto Kaaja, Karin Manhem, Jaakko Tuomilehto, *Int.J.Clinical Practice*, *Supplement*, **139**, 26-32 (2004).
- 9. Alexis Gairard, Visitarion Lopez-Mirand, Fanny Pernol, Jent,F Beck, Genevieve Coumaros, Christen, Mario, *Journal of Cardiovascular Pharmacology*, **43(5)**, 731-736 (2004).
- 10. K.D. Tripahy, Essential of Medical pharmacology, 4th Ed, 129.
- 11. Nagaki Sato, Osamu Okamoto, Makato Jitsuka; Patent No: WO 2001062738.
- 12. G.Rima, J.Satge, H.Santenac-Roumanou, M. Fatome, G Lion, I.D.Laval, *European J.Med.Chem*, **28(10)**, 761-7 (1993).
- 13. O Dupuy, B.Bauduceau, H Mayaudon, Hospital begins, St.mande, FR *American.J. of Hypertension*. **13(6, pt.2),** 1235-1265 (2000).
- 14. Noel G Morgan, Chan, Sue, L.F. Current Pharmaceutical Design, 7(14), 1413-1431 (2001).
- 15. A. Sohn, US Patent 2,161,938 (1939).
- 16. Ann. French Patent, M1614 (1963): Chemical Abstracts. ,58, 1257e (1964).
- 17. Ann. French Patent, 1,353,049 (1964); *Chemical Abstracts*. **61**. 4146c (1964).
- 18. W.Hoefke, W. Kobinger, and A. Walland, Arzeim-Forsch., 25, 786 (1975.
- 19. D. Chen and. FYouman, *Proc.Soc.*, *Expt.Biol.Med.*, **61**.
- 20. E.Urech, A.Mayxer, and K.Miescher, *Helv. Chim. Acta*, **33**, 1386 (1950).
- 21. E.Rothlin, Helv. Physiol .ET Pharcol .Acta , 2, C 48, (1944)
- 22. www. Uspto. gov / .../ uspc 548 /defs 548 . htm
- 23. www. rsc. Org /ej/P₁/2000/a 909891-S /. gif
- 24. www. rsc. org /ej/JM/2001/b0094060/ b0094060 f_1 gif
- 25. www.phc.vcu.edu/rag/serotonin/54510.gif
- 26. htp://upload.wikipedia.org/wikipedia/thump/d/de/tetrahydrozoline.pn/50px.tetrahydrozoline.pn.
- 27. Swastika ganguly and Balkrishnen Razdan, *Indian Journal of hetero cyclic chemistry*, **15** (191-192) (2005).
- 28. R.H. Udupi and A.R Bhat, Indian Journal of Heterocyclic chemistry, 8, 143-146 (1998).

(Received: 4 October 2009 Accepted: 25 October 2009 RJC-461)

RJC will widely cover all branches of **CHEMISTRY** including: Organic, Inorganic, Physical, Analytical, Biological, Pharmaceutical, Industrial, Environmental, Agricultural & Soil, Petroleum, Polymers, Nanotechnology, Green Chemistry, Forensic, Phytochemistry, Synthetic Drugs, Computational, as well as Chemical Physics and Chemical Engineering.

Manuscript Categories: Full-length paper, Review Articles, Short/Rapid Communications.

<u>Manuscripts should be addressed to:</u>

Prof. (Dr.) Sanjay K. Sharma

Editor-in-Chief

23, 'Anukampa', Janakpuri, Opp. Heerapura Power Station, Ajmer Road, Jaipur-302024 (India)

E-mail: rasayan journal@gmail.com, drsan jay 1973@gmail.com

Mobile: 09414202678, 09887050628