SYNTHESIS OF 5-UNSUBSTITUTED -3,4-DIHYDROPYRIDINE-
2-(1H)- ONES USING NBS AS A CATALYST UNDER SOLVENT
FREE CONDITIONS

Shivaji Pandit1, Ruksana Shaikh2 and Vikram Pandit3
1Department of Chemistry, Arts, Science and Commerce College Kolhar, Tal. Rahata, Dist.
Ahmednagar 413710 (MS) India.
2P. G. and Research Centre, Department of Chemistry, P. V. P. College Pravaranagar (Loni. kd)
3P. G. and Research Centre, Department of Chemistry, Fergusson College Pune, (MS) India.
Email: akankshapandit2002@yahoo.com

ABSTRACT
The development of efficient and versatile catalytic system for one pot multicomponent reaction is an active
ongoing research area for further improvement towards milder reaction conditions, N-bromosuccinimide (NBS) has
been used an efficient catalyst for the synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2-(1H)-ones at room
temperature under solvent free conditions.

Keywords. Dihydropyrimidine derivatives, Enolizable ketones, Aldehydes, Multicomponent, N-Bromosuccinimide,
Solvent-free

INTRODUCTION
At the beginning of the new century, with the increasing environmental concerns and the regulatory
constrains faced in the chemical and pharmaceutical industries, development of environmentally benign
organic reactions has become a crucial and demanding research area in modern organic chemistry1.
Recently Wender defined the ‘ideal synthesis’ as one in which the target components is produced in one
step, in quantitative yield from readily available and inexpensive starting materials in resource-effective
and environmentally acceptable2. The one-pot multicomponent condensation reactions offer significant
advantages over conventional linear type synthesis to provide products with the required diversity.
Biginelli reported a cyclo-condensation reaction3 between active methylene compound, aldehydes and
urea under strongly acidic conditions. Dihydropyrimidone derivatives are found as core units in many
marine alkaloids (batzelladine and crambine), which are potent HIVgp-120CD4 inhibitors4. In recent
years, these compounds are known to exhibit a wide range of biological activities such as antiviral,
antitumor, antibacterial and anti-inflammatory5, consequently, synthesis of these compounds has gained
importance and plethora of improved synthetic methodologies has been recently reported. Most
commonly Lewis acids6 such as InCl3, BF3.OEt2, BiCl3, ZnCl2, LiClO4, La (OTf)3, NiCl2.6H2O or
FeCl3.6H2O, Zn(OTf)2, Mn(OAc)3, H2O, CAN, Bi(OTf)3, LiBr, Yb(OTf)3 and ionic liquids have been
used. However, some of these methods require toxic reagents in combination with Bronsted acids such as
HCl, acetic acid. Recently acidic montmorillonite-KSF and microwave irradiation have been reported7.
Thus the development of efficient and versatile catalytic system for multicomponent reaction is an active
ongoing research area for further improvement towards milder reaction conditions, variations of
substituents in all these components. Herein, we report N-bromosuccinimide (NBS) as an efficient
catalyst for the synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2-(1H)-ones at room temperature under
solvent free conditions with enhanced reaction rates and high yields. (Scheme-1)
EXPERIMENTAL

All chemicals were used as AR grade. The reactions were carried out in a borosil beaker of 50 ml capacity at room temperature and monitored by TLC using silica gel 60-120 mesh. Melting points were recorded by open capillary method and are uncorrected. IR spectra were determined on Perkin-Elmer FTIR-240C spectrophotometer on KBr disc. 1H NMR spectra were recorded on 300 MHz spectrometer in DMSO-d$_6$ using TMS as an internal standard.

Typical Procedure

A mixture of benzaldehyde (530 mg, 5mmol), urea (450 mg 7.5 mmol) and acetophenone (590 mg, 5 mmol) mixed for few minutes at room temperature. To this mixture NBS (10 mmol %) was added. The reaction mixture was ground for 30 minutes and the temperature of mixture was raised up to 50°C and maintained at room temperature for appropriate time (Table 1). After completion of the reaction (monitored by TLC), the reaction mixture was washed with ice-cold water (2 x 20 ml). The resulting solid products were collected by filtration. The crude products were purified by crystallization from ethanol.

Spectroscopic data

(4d), M. P. = 178-180 °C
IR (KBr) cm$^{-1}$: 840, 960, 1016, 1078, 1240, 1440, 1464, 1600, 1620, 1655, 3305, 3170.
1H-NMR (200 MHz, DMSO-d$_6$), δ = 5.1 (s, 1H), 5.3 (s, 1H), 5.5 (s, 1H), 5.8 (s, 1H), 6.8 (d, J = 8.2 Hz, 2H), 7.1 (d, J = 8.2 Hz, 2H), 7.3-7.4 (m, 5H).
Elemental Analysis for C$_{17}$H$_{16}$N$_2$O; Calcd. C, 77.25; H, 6.09; N, 10.59.
Found: C, 77.32; H, 6.24, N, 10.24.

(4g), M. P. = 148-150 °C
IR (KBr) cm$^{-1}$: 846, 964, 1016, 1068, 1240, 1440, 1590, 1621, 3315, 3180, 1655,
1H-NMR (200 MHz, DMSO-d$_6$), δ = 5.2 (s, 1H), 5.5 (s, 1H), 5.8 (s, 1H), 7.0 (d, J = 8 Hz, 2H), 7.2 (d, J = 8 Hz, 2H), 7.3-7.4 (m, 5H).
Elemental Analysis for C$_{16}$H$_{13}$N$_2$OCl; Calcd. C, 76.72; H, 5.65, N, 9.83; Cl, 12.45.
Found: C, 76.78; H, 5.69, N, 9.93; Cl, 12.55.

RESULTS AND DISCUSSION

At present there are very few articles describing the synthesis of certain 5-unsubstituted 3,4-dihydropyrimidin-2-(1H)-ones. And these methods have typically accomplished to the synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2-(1H)-ones in a multistep fashion via the saponification of the C-5 ester followed by the thermal decarboxyllation with low yields. The use of ketones instead of β-keto esters or β-diketones gave us the opportunity to prepare corresponding new -5-unsubstituted 3,4-dihydropyrimidin-2-(1H)-ones. The Biginelli type reaction of ketones with single carbonyl group provide a useful 5-unsubstituted 3,4-dihydropyrimidin-2-(1H)-ones.

All the results are summarized in table 1. Aromatic aldehydes carrying electron withdrawing groups (entry, b, c, e, g, h, j, k, m, and n) or electron donating groups (entry, d, f, i, l) afforded high yields of 5-unsubstituted-3, 4-dihydropyrimidin-2- (1H)-ones. The enolizable ketones carring electron donating groups (entry, h, k, l, m, and n) and electron withdrawing groups (i and j) affords the high yields of 5-unsubstituted-3, 4-dihydropyrimidin-2- (1H)-ones. It is also observed that the enolizable ketone carring electron donating groups (entry h, k, l, m, and n) reacts more slowly as compared to the simple enolizable
ketones. The important feature of this procedure is the survival of a variety of functional groups such as nitro, hydroxyl, halides, etc. under the reaction conditions. The aliphatic aldehydes and aliphatic ketones as well as α, β-unsaturated aldehydes and ketones do not undergo multi-component cyclocondensation reaction under the same reaction conditions for a longer period. This method is very simple, clean, and the product precipitates out as a solid in nearly all cases.

In conclusion, we have developed a simple and general method for the synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2-(1H)-ones using highly inexpensive and easily available N-bromosuccinimide as a catalyst. This protocol offers several advantages including mild reaction conditions, elevated product yields, enhanced reaction time and simple workup procedure, which makes it a useful process for the synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2-(1H)-ones.

ACKNOWLEDGEMENTS

SSP thanks UGC, New Delhi for the financial assistance under minor research projects. RSS thanks to the Principal, P. V. P. College Pravaranagar for providing all facilities during this work under the restructuring programme.

REFERENCES

Table 1: Synthesis of 5-Unsubstituted-3,4-Dihydropyrimidin-2-(1H)-ones.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehydes 1</th>
<th>Ketones 2</th>
<th>Product 4</th>
<th>Time (min.)</th>
<th>Yields<sup>a,b</sup> (%)</th>
<th>MP (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td>4a</td>
<td>28</td>
<td>81</td>
<td>232-234</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td>4b</td>
<td>24</td>
<td>94</td>
<td>202-204</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>4c</td>
<td>24</td>
<td>76</td>
<td>126-217</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>4d</td>
<td>29</td>
<td>88</td>
<td>----c</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td>4e</td>
<td>25</td>
<td>80</td>
<td>196-197</td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td>4f</td>
<td>33</td>
<td>71</td>
<td>166-167</td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td>4g</td>
<td>24</td>
<td>92</td>
<td>----c</td>
</tr>
<tr>
<td>h</td>
<td></td>
<td></td>
<td>4h</td>
<td>33</td>
<td>88</td>
<td>196-197</td>
</tr>
</tbody>
</table>
Table. 1: Continued.....

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehydes</th>
<th>Ketones</th>
<th>Product 4</th>
<th>Time (min.)</th>
<th>Yields (a,b) (%)</th>
<th>MP (^{\circ}C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td>4i</td>
<td>23</td>
<td>74</td>
<td>167-168</td>
</tr>
<tr>
<td>j</td>
<td></td>
<td></td>
<td>4j</td>
<td>24</td>
<td>91</td>
<td>182-184</td>
</tr>
<tr>
<td>k</td>
<td></td>
<td></td>
<td>4k</td>
<td>29</td>
<td>88</td>
<td>189-190</td>
</tr>
<tr>
<td>l</td>
<td></td>
<td></td>
<td>4l</td>
<td>32</td>
<td>70</td>
<td>166-167</td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
<td>4m</td>
<td>32</td>
<td>92</td>
<td>196-197</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td>4n</td>
<td>29</td>
<td>90</td>
<td>203-205</td>
</tr>
</tbody>
</table>

\(a\) Products were characterised by IR and \(^1\)H NMR spectra and compared with authentic samples.

\(b\) Isolated and purified yields.

\(c\) Newly synthesized and spectroscopic data is given.

(Received: 30 October 2009 accepted: 13 November 2009 RJC-478)

If you think that you may be a potential reviewer in field of your interest, write us at rasayanjournal@gmail.com with your detailed resume and recent color photograph.