NAPHTHALENE DERIVATIVES: A NEW RANGE OF ANTIMICROBIALS WITH HIGH THERAPEUTIC VALUE

Y.B. Rokade and R.Z. Sayyed*

G.R.Y. Institute of Pharmacy, Borawa, Khargone, Madhya Pradesh (India)
*P.G. Department of Microbiology, P.S.G.V.P. Mandal’s S. I. Patil Arts, G. B. Patel Science & S.T.S.K.V.S. Commerce College, Shahada, Maharashtra-425409, India
*E-mail: sayyedrz@gmail.com

ABSTRACT
The discovery, development and identification of biologically active compounds has gain lot of importance in the recent years, even though there is considerable number of adverse effects, the medicinal chemists have always tried to design drug substance possessing maximum therapeutic application and minimum toxicity. Combinatorial synthesis has brought lot of evolution in the recent trends of drug synthesis. Naphthalene has been identified as new range of potent antimicrobials effective against wide range of human pathogens. They occupy a central place among medicinally important compounds due to their diverse and interesting antibiotic properties with minimum toxicity.

Keywords: Naphthalene, antimicrobial activity.

INTRODUCTION

Naphthalene as antimicrobial agent
Several naphthalene containing drugs are available, such as nafcillin, naftine, tolnaftate, terbinafine, etc. which play vital role in the control of microbial infection. Several other synthetic derivatives have also been reported which possess significant and satisfactory antimicrobial property. β-naphthol commonly used as dye possess a very good antimicrobial property.

Chemistry of naphthalene:
1. Naphthalenes
Naphthalene is the simplest and the most important member of this class of arenas, in which two benzene rings are fused in ortho positions.

Physicochemical properties
Naphthalene is a colorless solid which forms shining flaked-crystal, its melting point is 82.2°C. It has familiar odor of moth balls. It is very volatile and sublimes slowly at room temperature. Naphthalene is insoluble in water, moderately soluble in alcohol, highly soluble in ether and benzene. It burns with a smoky flame.

Naphthalene gives the usual aromatic electrophonic substitution reaction as shown in Fig 2.
2. Naphthol

The mono hydroxy derivatives of naphthalene are called naphthol.

Preparation

Both 1 and 2 naphthols are prepared from the corresponding naphthalene sulphonlic acids by fusion with sodium hydroxide at 300°C followed by acidification.

Physicochemical properties

They are colorless solid compounds having a melting point of 123-124°C, they are insoluble in water, benzene and highly soluble in alcohol and ether. Naphthol gives all the chemical reactions characteristic of phenols.

Review of research on naphthalene

Mkpenie et al., 3 have tested azo-2 naphthol and 2-naphthol against five representative human pathogenic microorganisms i.e. *Staphylococcus aureus*, *Escherichia coli*, *bacillus subtilis*, *pseudomonas aeruginosa* and *streptococcus faecalis*. Both azo-2 naphthol and 2-naphthol were found equally effective against all the organisms tested.

The 2- naphthol and azo 2-naphthol were screened for the presence of antibacterial constituents against *Staphylococcus aureus* and *Escherichia coli* by Faizul et al., 4, they found naphthol ring as a active principal component. A series of 2-benzylidene amino naphthothiazoles were designed and synthesized incorporating the lipophillic naphthalene ring to render them more capable of penetrating various bio-membranes. Schiff bases were synthesized by the reaction of naphtha [1, 2-d] thiazol-2-amine with various substituted aromatic aldehydes. 2-(2'-Hydroxy) benzylidene aminonaphtho thiazole was converted to its Co (II), Ni (II) and Cu (II) metal complexes upon treatment with metal salts in ethanol. All the compounds were evaluated for their antibacterial activities by paper disc diffusion method with Gram positive *Staphylococcus aureus* and *Staphylococcus epidermidis* and Gram negative *Escherichia coli* and *Pseudomonas aeruginosa*. The minimum inhibitory concentrations of all the Schiff bases and metal complexes were determined by agar streak dilution 4.

Yildiz et al., 5 synthesized 2-hydroxy-1-napthalene with 6,7-dihydro-13H dibenzo [e,n][1,4]doxomin-2,11 diamine of the ligands and screened in vitro for their antimicrobial potential against *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Micrococcus luteusla*, *Proteus vulgaris*, *Pseudomonas aeruginosa*,...
Mycobacterium segments, Bacillus cereus, Listeria monocytogenes, Candida albicans, Kluyveromyces frugilis, Rhodotorularubra, debrayomyceshanseni, Hanseniaspora guilliermondi. Zeynep et al. studied the antimicrobial activity of certain chemically synthesized compounds. The compound containing naphthalene moiety was studied on the Gram-negative bacteria like Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853), the Gram-positive bacteria like S. aureus (ATCC 25923), MRSA (clinical isolate), Enterococcus faecalis (ATCC 29212) and fungi like Candida krusei (ATCC 6258) and Candida albicans (ATCC 10231). The compound was found to have potent antibacterial and antifungal activity. Nagaraja et al. synthesized naphthofurans derivative coupled with both quinoline and azetidine nucleus. This compound exhibited significant antimicrobial activities.

Nagaraja et al. synthesized 2-Aryl-2,3-dihydronaphtho[2,1-b]furo[3,2-b]pyridin-4(1H)-ones were synthesized from 2-hydroxy-1-naphthonitrile and characterized on the basis of chemical, analytical and spectral data. The compounds screened for antibacterial and antifungal activity were found effective against human pathogenic Gram positive and Gram negative bacteria and fungi.
R=H,Cl,Br,CH₃OCH₃,NO₂

Sharma et al., ¹⁰ prepared some naphthalene derivatives by incorporating azetidinyl and thiazolidinyl moieties at its a- or b-positions such as a-(3-chloro-2-oxo-4-substituted)aryl-1-azetidinyl) naphthalenes 6–10, a-((substituted)aryl-4-oxo-1,3-thiazolidin-3-yl) naphthalenes 11–15, b-(3-chloro-2-oxo-4-substituted aryl-1-azetidinyl) naphthalenes 21–25, and b-(substitutedaryl-4-oxo-1,3-thiazolidin-3-yl) naphthalenes 26–30. These compounds have also been screened for acute toxicity and anti-inflammatory and analgesic activities. Compounds which showed better anti-inflammatory and analgesic activities were also examined for their ulcerogenic liability and underwent a cyclooxygenase assay ¹⁰.

Zeynep et al., ⁶ prepared several 2-(5,5,8,8-tetramethyl-5,6,7,8 tetrahydronaphthalen-2-yl)-1H-benzimidazole-5-carboxamidine analogues and evaluated for their antibacterial and antifungal activities against S. aureus, Methicillin-resistant S. aureus (MRSA), C. albicans and C. krusei ⁶.

Goksu et al., ¹² reported that 5-bromo-6methoxynapthalene-2-carboxylic acid and 5,6 dimethoxynapthalene-2-carboxylic acid were having antibacterial activity against some pathogenic bacteria under in-vitro conditions ¹².

Kyu Ryu et al., prepared ¹³ a series of 2-arylamino-5-hydroxy-naphthalene-1,4-diones, 3-arylamino-5methoxy-naphthalene-1,4-diones, and 2-arylamino-3chloro-5-hydroxy-naphthalene-1,4-diones and tested for their in-vitro antifungal activity against the Candida and Aspergillus niger ¹³.
Huang et al.,\cite{Huang} evaluated the antimicrobial potential of 18 synthetic naphthalene derivatives and tested for their anti-inflammatory activity. They prepared naphthalene derivative prepared according to the Mannich reaction\cite{Mannich}.

Ahemed et al.,\cite{Ahemed} substituted several new 1 H-benzo chromene derivatives with 2-napthols and found them to possess enhanced biological activity against bacterial, fungal and viral pathogens of human\cite{Ahemed}. Azarifar et al.,\cite{Azarifar} the syntheses of twenty-four 3, dinaphthalene -1-yl substituted 2-pyrazolines containing certain groups as substituent’s both on the naphthalene and pyrazoline rings. The compounds were tested in vitro for antimicrobial activity against \textit{Escherichia coli}, \textit{Staphylococcus aureus}, \textit{Klebsiella pneumoniae}, \textit{Proteus mirabilis}, \textit{Shigella dysentry} and \textit{Salmonella typhii} at a temperature of 37 °C (±1°C). It was observed that 81% of the total samples tested showed antimicrobial activity against all the organisms tested\cite{Azarifar}.

Gulay et al.,\cite{Gulay} synthesized new 5(1/-2-naphthyloxymethyl)-1,3,4-oxadiazole-2 (3H)-thione,2-amino-5-(1-2-naphthyloxymethyl)-1,3,4-oxadiazole, (1-naphthoxy met--hyl) -1,3,4-oxadiazole-2(3H)-1,3,4-oxadiazole-2(3H)-one derivatives from 1or/2-napthol. The antimicrobial properties of the compound were investigated against \textit{Staphylococcus aureus}, \textit{Escherichia coli} and \textit{Pseudomonas aeruginosa}, \textit{Candida albicans}, \textit{C. krusi} and \textit{C. parapsilosis} \cite{Gulay}. The derivatives were found effective against wide range of pathogenic bacteria and fungi.
Palaska et al.,18 synthesized sixteen 1-(2-naphthoxyacetyl)-4-substituted-3-thiosemicarbazide, 2-(2-naphthoxyacetyl)-substitutedamino-1,3,4-oxadiazole, 2-(2-naphthoxyacetyl)-5-substitutedamino-1,3,4 thia diazole and 5-(2-naphthoxyacetyl)--yl)-4-substituted-1,2,4-triazole-3-thione derivatives. They reported these derivatives as effective oral anti-inflammatory agents with reduced side-effects18.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure16}
\caption{5(1/-2-naphthoxymethyl)-1, 3, 4-oxadiazole-2(3H)-thione}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure17}
\caption{2-amino-5(1/-2-naphthoxymethyl)-1, 3,4oxadiazole}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure18}
\caption{(1/-2-naphthoxymethyl)-1,3,4- oxadiazole-2(3H)-1,3,4oxadiazole-2(3H)-one}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure19}
\caption{1-(2-naphthoxyaceyl)-5-substituted-3-thiosemicarbazide}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure20}
\caption{2-(2-naphthoxyacetyl)-5-substitutedamido-1,3,4-oxadiazole}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure21}
\caption{2-(2-naphthoxyacetyl)-5-substitutedamido-1,3,4-thiadia zole}
\end{figure}
Bansal et al., 19 synthesized 1-acetyl-5-substitutedaryl-3-(β-aminonaphthyl)-2-pyrazolines and β - (substituted aminoethyl) amido naphthalenes compounds by reaction of b-acetylamino-naphthalene with different aromatic aldehydes followed by cyclisation with hydrazine hydrate and with different primary or secondary amines (Mannich’s reaction), respectively. The structures of new compounds were confirmed by 1H-NMR and IR spectral data. Anti-inflammatory and ulcerogenic activities invivo were evaluated and compared with the standard drugs 19.

Strom et al., 20 have reviewed the important structural features affecting the antimicrobial activity of 15-residue derivatives of lactoferricins. His investigations were based on an alanine-scan of a 15 residue bovine lactoferricin derivative that revealed the absolute necessity of two tryptophan residues for antimicrobial activity. They prepared a synthetic 15-residue derivative of bovine lactoferricin (LFB) containing naphthalene derivative and concluded that 2-naphthalene peptide more active than 1-naphthalene isomers; 2, the naphthalene moiety in 2-Nal is pointing more away from the b-carbon atom than in 1-Nal, giving 2-Nal a more elongated shape; 2-Nal thereby has a longer side chain than 1-Nal, and was able to penetrate deeper into the cell membrane of bacteria, thus offering an explanation as to why the 2-Nal peptides display a higher antimicrobial activity than the 1-Nal peptides 18.

Oliveira et al. 21 synthesized 3-Hydrazino-naphthoquinones as analogs of lapachol. Several 1, 4-naphthoquinone derivatives having a hydrazino side chain were synthesized from 3-diazo-naphthalene-1,2,4-trione and tested as potential antimicrobial agents. These naphthoquinone derivatives 2-[N’-(1-acetyl-2-oxo-propylidene) -hydrazino] -3-hydroxy [1,4] naphthoquinone, ethyl2-[(3-hydroxy-1,4-dioxo-1,4-dihydro-naphthalen-2-yl)-hydrazono]-3-oxobutyrate, t-butyl2-[(3-hydroxy -1,4-dioxo-1,4-dihydro-naphthalen-2-yl)-hydrazono]-3-oxobutyrate, 3-hydroxy-2-[(di-O-isopropylidene-malonate)-hydrazino]-1,4 naphtho-quinone, and diethyl 2- [(3-hydroxy -1,4- dioxo-1,4- dihydro – naphthalene -2-yl)-hydrazono]-malonate showed greater antibacterial activity at the level of the preliminary susceptibility testing in disk 21.

Ambrogi et al., 22 prepared new halogenated 1, 4-naphthoquinones together with other known 1, 4-naphthoquinones and screened these derivatives for their antibacterial activity by turbidimetric method and for antifungal activity by diffusion method on agar medium.
Husain et al.,23 showed the hypoglycemic activity of some thiosemicarbazides and naphthoxyacetic acid derivatives23.

Marketed drugs containing naphthalene and azetidin-2-one1

REFERENCES

(Received: 5 December 2009 Accepted: 11 December 2009 RJC-499)

http://www.rasayanjournal.com

Be a Proud Life Member of RJC

Life Membership for Individuals: Rs.8000/- for Indians and USD 1000 for others.

Life Membership for Institutional: Rs.10000/- for Indians and USD 1500 for others.

BENEFITS OF LIFEMEMBERSHIP:
1. You will receive the journal and all its special issues regularly life long.
2. You will receive all other future publications (Proceedings, Edited Books, Monographs etc.) published by RJC on 50% discount.
3. If you are a LIFE MEMBER, you need not to pay subscription fee every time for publication of your paper in RJC.
4. You’ll be a Reviewer for RJC manuscripts of your Field Interest and we’ll publish your name in our journal.
5. You will be exempted from Registration Fee of any National or International future events (i.e. workshop, seminars, Conferences etc.) organized by RJC.
6. You may be elected as Editorial Member of RJC (Note: It’ll depend upon your publication and scientific achievements).
7. You’ll have a very personalized gift from RJC with Complements.

For being a **Life Membership**, just mail to editor-in-Chief with your detailed Resume.