THE STUDY OF ACOUSTIC AND THERMODYNAMIC PROPERTIES OF IRON ACETYLACETONATE IN AQUEOUS SODIUM HYDROXIDE

Neelam Shakya¹*, Neha Shakya¹ and S.S. Yadav²

¹Department of Chemistry, Kr. R.C.M. (P.G.) College, Mainpuri (U.P.) India
²Department of Chemistry, Ganjundwara College, Ganjundwara (U.P.) India

*E-mail: nilam1.chem@gmail.com

ABSTRACT
Viscosity (\(\eta\)), density (\(\rho\)), and ultrasonic velocity (U) in binary mixtures of iron acetylacetonate with aqueous NaOH were measured at 30°C, 35°C, 40°C and atmospheric pressure by using a single-crystal interferometer at a frequency of 2 MHz. These parameters and concentrations were used to calculate adiabatic compressibility (\(\beta\)), intermolecular free length (\(L_f\)), specific acoustic impedance (Z), apparent molal compressibility (\(\phi_k\)), solvation number (S_n) and relative association (Ra). The results indicate that there is a significant interaction between solute and solvent.

Keywords: Ultrasonic velocity, Iron acetylacetonate, Adiabatic compressibility.

INTRODUCTION
Measurements of ultrasonic velocity in aqueous¹², pure nonaqueous³⁴, and mixed⁵¹⁰ electrolytic solutions give information about physico-chemical behavior of liquid mixtures such as molecular association and dissociation. Mixed¹¹⁻¹³ liquids rather than single pure liquids are of almost practical importance in most chemical and industrial processes as they provide a wide range of mixtures of two or more components in varying proportions so as to permit continuous adjustment of the derived properties of the medium. The present paper is an investigation of the behavior of binary solutions of iron acetylacetonate in aqueous NaOH with regard to adiabatic compressibility, intermolecular free length, specific acoustic impedance and relative association from ultrasonic measurements at 30°C, 35°C and 40°C.

EXPERIMENTAL
All chemicals were used of analytical reagent (AR) grade. The purity of the used chemicals was checked by density determination at 35°C. The values of density obtained tally with the literature values. Binary liquids mixtures of different known compositions were prepared in airtight-stoppered measuring flask to minimize the leakage of volatile liquids. The weighing was done using electronic balance with precision ±0.01mg. The double walled bicapillary pyknometer was used for the measurement of densities of solvents and solutions¹⁴⁻¹⁵ with an accuracy of ±0.0005gm/cm³. An ubbelohde viscometer, having frequency of 2 MHz (Mittal Enterprises, New Delhi, Model: F-81) with an accuracy of ±0.05%. Detailed of experimental techniques are given elsewhere¹⁸.

Theory and Calculation
Different thermodynamic parameters such as adiabatic compressibility (\(\beta\)), intermolecular free length (\(L_f\)), specific acoustic impedance (Z), apparent molal compressibility (\(\phi_k\)), solvation number (S_n) and relative association (Ra), have been calculated at 30°C, 35°C, and 40°C using ultrasonic velocity (U), density (\(\rho\)) and viscosity (\(\eta\)) of these solutions with the help of the following equations.

\[
\beta = U^2 \times \rho^{-1}
\]

\[
L_f = K \times \beta^{1/2}
\]
\[Z = U \times \rho \]
\[\phi_k = 1000 \left(\rho^o \beta - \beta^o \rho \right) / C \rho^o + (\beta^o \times M) / \rho^o \]
\[S_n = n_1/n_2 \left(1 - \beta / \beta^o \right) \]
\[Ra = \left(\rho / \rho^o \right) \left(U^o / U \right)^{1/3} \]

Where \(\rho, \rho^o \) and \(U, U^o \) are the densities and ultrasonic velocities of solution and solvent, respectively; \(K \) is Jacobson constant; \(M \) molecular weight of solute; \(\beta^o \) and \(\beta \) the adiabatic compressibility of solvent and solution, \(C \) is concentration in mole/litre; \(n_1 \) and \(n_2 \) are the number of moles of solvent and solute, respectively.

RESULT AND DISCUSSION

The measured parameters viz. ultrasonic velocity (\(U \)), density (\(\rho \)), viscosity (\(\eta \)) are given in the table (1).

The table shows these three parameters increase with concentration of iron acetylacetonate. This indicates strong interaction observed at higher concentrations of iron acetylacetonate and suggests more association between solute and solvent molecules in the system. The variation of ultrasonic velocity (\(U \))
with solute concentration (C) can be expressed in terms of the concentration derivatives of density (p) and adiabatic compressibility (β) by the relationship.
\[
dU/dC = U/2 [1/p(dp/dC) +1/β (dβ/dC)]
\]
The result indicate that the density increases while the adiabatic compressibility decreases with increasing solute concentration and so the quantity \(dβ/dC\) is positive while \(dp/dC\) is negative. Since the quantity \(1/β[dβ/dC]\) predominates over \(1/p(dp/dC)\) for the solution, the concentration derivative of velocity \(dU/dC\), will be positive and so the velocity increases with increasing concentration of iron acetylacetonate. This is an agreement with the result of several workers reported for electrolytic solutions. The adiabatic compressibility, \(β\) for the solution of iron acetylacetonate decrease with increase in solute concentration (table-1). The decrease in adiabatic compressibility is attributed to the fact that the solute molecules, in dilute solution ionize in simple metal cations and anions. These solutions are surrounded by a layer of solvent molecules, firmly bound, and oriented towards the ions. The orientation of solvent molecules around the ions is attributed to the influence of electrostatic field of ions and thus the internal pressure increases, which lowers the compressibility of solution i.e. the solutions become harder to compress. The intermolecular free length \(L_f\), which is expected to decrease as a result of mixing of the two components, decreases with the increase in solute concentration. Rise in temperature generally increases the internal energy of the system by distorting the local structure, resulting in an increase in intermolecular free length and subsequently decreasing the ultrasonic velocity. In the present study, the elevation of temperature from 30°C to 40°C shows the same trend.

The intermolecular free length \(L_f\) decrease while specific acoustic impedance \(Z\) increase with increase in solute concentration (table-1), which can be explained on the basis of lyophobic interaction between the solute and solvent molecule which increases the inter molecular distance leaving relatively wider gaps between the molecules and thus becoming the main cause impediment to the propagation of ultrasound waves and affects the structural arrangement. The specific acoustic impedance, a product of the density of the solution and the velocity, has shown the reverse trends to that of inter molecular free length. Thus the fact that increase of velocity, decrease of adiabatic compressibility, decrease of intermolecular free length and increase of specific acoustic impedance with increase in molar concentration at all temperatures is an indicative of the increase in intermolecular forces with the addition of solute forming aggregates of solvent molecules around solute ions and supports the strong solute-solvent interactions, due to which structural arrangement is affected.

Relative association is influence by two factors (i) the breaking up of the solvent molecules on addition of electrolyte to it and (ii) the solvation of ion that are simultaneously present; the former resulting in a decrease and later increase of relative association. In the present investigation, it has been observed that relative association value increases with increase in concentration. Similar results have been reported in literature. Solvation number \(S_n\) are calculated using Passynsky equation and are listed in table (1). The \(S_n\) values are found to increase with the increase in solute, which also suggested close association between solute and solvent.

REFERENCES

Adopt GREEN CHEMISTRY
Save Our Planet.
We publish papers of Green Chemistry on priority.

If you think that you may be a potential reviewer in field of your interest, write us at rasayanjournal@gmail.com with your detailed resume and recent color photograph.

Scope and Coverage:
Water: Research & Development [Water R&D] is an international Research Journal, dedicated to ‘Water’. It is a truly interdisciplinary journal on water science and technology. It’ll showcase the latest research related to Water in the field of chemistry, physics, biology, agricultural, food, pharmaceutical science, and environmental, oceanographic, and atmospheric science. It includes publication of reviews, regular research papers, case studies, communications and short notes.

Its Coverage area is:
Water Pollution; Ecology of water resources, including groundwater; Monitoring, remediation and conservation of water resources; Rain Water Harvesting; Absorption and Remediation; Aquatic and Marine life; Corrosion; Industrial Effluent treatments; Physics, Chemistry and Biology of water; Water, as a Green solvent/Reaction Medium; Management of water resources and water provision; Wastewater and water treatment; Water related Rules, Policies, Laws; Dyes and Pigments; Water and Health; Sustainable use of water; Policies and Regulations about water; Degradation of aquatic ecosystem; Water Footprints and Virtual water calculations.

All submissions are addressed to the Editor-in-Chief at Editorial office address or by e-mail to: water.editor@yahoo.co.in

Note: If you think you may be a potential reviewer for water related manuscripts, please send your CV and Photo to the Editor.