SYNTHESIS OF S-HEPTA-O-BENZOYL MALTOSYL-1-ARYL DITHIOCARBAMATES AND THEIR IN VITRO ANTIMICROBIAL ACTIVITIES

Usha W. Karhe and Shirish P. Deshmukh*
P. G. Department of Chemistry,
Shri Shivaji College, Akola- 444 001. (M.S.) India.
*E-mail: karhe4787@gmail.com

ABSTRACT
A Series of novel S-hepta-O-benzoyl maltosyl-1-aryl dithiocarbamates have been synthesized by the interaction of hepta-O-benzoyl maltosyl bromide and various ammonium aryl dithiocarbamates. The newly synthesized compounds have been characterized by analytical and IR, 1H NMR and Mass spectral analysis. The polarimetric study of the compounds has been carried out. In the present investigation compounds have been tested for their antibacterial activity against *Escherichia coli*, *Staphalococcus aureus*, *Proteus vulgaris* and Psudomonas auriginosa* and antifungal activity against *Candida albicans* and *Aspergillus niger*.

Keywords: Maltosyl bromide, ammonium aryl dithiocarbamates, maltosyl aryl dithiocarbamates, antimicrobial activities.

INTRODUCTION
Per-O-acetyl and per-O-benzoyl derivatives of sugar are important intermediates in carbohydrate transformation and synthesis. There are many reports on thio sugar in our laboratory$^{1-2}$ Thio sugars are biologically and pharmacologically important. These compounds have several applications such as carbohydrate base detergents, antiviral, antidiabetic, anticancer agents$^{3-5}$.

Synthesis of S-hepta-O-benzoyl maltosyl-1-aryl dithiocarbamates is based on the interaction of hepta-O-benzoyl maltosyl bromide6 with the corresponding ammonium aryl dithiocarbamates7 was described. The newly synthesized compounds have been characterized by analytical and IR, 1H NMR and Mass spectral analysis8-12. The polarimetric study of the compounds has been carried out.

EXPERIMENTAL
All the melting points recorded were found uncorrected. The structures of newly synthesized compounds were confirmed on the basis of elemental and spectral analysis. IR Spectra were recorded on Perkin-Elmer spectrum RXI FTIR Spectrometer and in KBr disks on SHIMADZU IR affinity-1 FTIR spectrometer. 1H NMR was obtained on Bruker DRX-300 NMR Spectrometer. Samples were prepared in CDCl$_3$ with TMS as an internal reference. The mass spectra were obtained on Thermo Fennigan LCQ Advantage max ion trap mass spectrometer. Optical rotations [α]$_D^{31}$ were measured on the Equip-Tronics EQ-800 Digital Polarimeter at 31°C in CHCl$_3$.

Material and Method
The reagents required for the given synthesis are obtained as-

1. **Hepta-O-benzoylmaltosyl bromide (I)**
 - Hepta-O-benzoyl maltosyl bromide was prepared by the interaction of maltose octaacetate with brominating reagent.

2. **Ammonium aryl dithiocarbamates (IIa-f)**
 - Ammonium aryl dithiocarbamates were prepared by the interaction of ammonia, carbon disulphide and aryl amines.
DITHIOCARBAMATES AND THEIR ACTIVITIES

Vol. 5 | No.1 | 1-4 | January - March | 2012

U. W. Karhe and S. P. Deshmukh

DITHIOCARBAMATES AND THEIR ACTIVITIES

Vol. 5 | No.1 | 1-4 | January - March | 2012

U. W. Karhe and S. P. Deshmukh

Scheme-1

3. S-hepta-O-benzoyl maltosyl-1-aryl dithiocarbamates (IIIb-f)

Isopropanolic suspension of hepta-O-benzoyl maltosyl bromide (0.005 M) and ammonium aryl dithiocarbamates (0.005 M) was heated on water bath at about 70°C until the suspension gets cleared. The clear solution was kept at room temperature for 20 h. It was mixed with 100 ml distilled water. These aqueous solutions were acidic and non-desulphurisable when boiled with alkaline plumbite solution. The aqueous solutions were basified with ammonium hydroxide which afforded a sticky mass which was not solidified on standing for several h. This sticky mass was purified by ethanol-water. The structures of all products synthesized were established on the basis of usual Chemical transformation and IR, NMR and Mass spectral analysis.

RESULTS AND DISCUSSION

Isopropanolic suspensions of hepta-O-benzoyl maltosyl bromide (I) and ammonium aryl dithiocarbamate (IIa) were heated on water bath at about 70°C until the suspension gets cleared. The clear solution was kept at room temperature for 20 h. It was mixed with 100 ml distilled water. These aqueous solutions were acidic and non-desulphurisable when boiled with alkaline plumbite solution. The aqueous solutions were basified with ammonium hydroxide which afforded a sticky mass which was not solidified on standing for several h. It was purified by ethanol-water. It gave charring test and non-desulphurisable.

The IR, ¹H NMR and mass spectral analysis (Experimental) and elemental analysis (Table-1) clearly indicated the product and assign the structure as S-hepta-O-benzoyl maltosyl-1-phenyl dithiocarbamamide (IIIa). When the interaction of hepta-O-benzoyl maltosyl bromide (I) was extended to other ammonium aryl dithiocarbamates (IIb-f) the related S-hepta-O-benzoyl maltosyl-1-aryldithiocarbamates (IIIb-f) were obtained.
Spectral data

IIIa. IR (KBr) : ν 3431 cm⁻¹ (N-H), 1725 cm⁻¹ (C=O), 1601 cm⁻¹ (C=N), 1449 cm⁻¹ (C-N), 1272 cm⁻¹ (C-O), 1099 and 1030 (characteristic of maltose) and 710 cm⁻¹ (C-S); ^1^HNMR (CDCl₃): δ 8.09-7.27 (40 H, m, Ar-H), δ 5.88-3.91 (14 H, m, maltosyl protons), δ 6.16 (1 H, s, N-H); MS (m/z): 1221 (M⁺), 1053, 976, 948, 932, 918, 579.

IIIb. IR (KBr) : ν 3429 cm⁻¹ (N-H), 1730 cm⁻¹ (C=O), 1600 cm⁻¹ (C=N), 1450 cm⁻¹ (C-N), 1273 cm⁻¹ (C-O), 1107 and 1039 (characteristic of maltose) and 710 cm⁻¹ (C-S); ^1^HNMR (CDCl₃): δ 8.065-7.210 (39 H, m, Ar-H), δ 5.934-3.85 (14 H, m, maltosyl protons), δ 6.163 (1 H, s, N-H); MS (m/z): 1256 (M⁺), 1140, 1031, 969, 907, 831, 758, 683, 609, 579, 429, 327, 298.

IIIc. IR (KBr) : ν 3428 cm⁻¹ (N-H), 1730 cm⁻¹ (C=O), 1600 cm⁻¹ (C=N), 1452 cm⁻¹ (C-N), 1376 cm⁻¹ (C-O), 1095 and 1039 (characteristic of maltose) and 710 cm⁻¹ (C-S); ^1^HNMR (CDCl₃): δ 8.099-7.170 (39 H, m, Ar-H), δ 5.965-3.910 (14 H, m, maltosyl protons), δ 2.346 (3 H, s, Ar-CH₃), δ 6.124 (1 H, s, N-H); MS (m/z): 1235 (M⁺), 1120, 1031, 969, 907, 831, 758, 683, 609, 579, 429, 327, 298.

C and H analysis were found satisfactory in all cases.

Table-1: Characterization data of S-hepta-O-benzoyl maltosyl-1-aryldithiocarbamates (IIIa-f)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Rf Value</th>
<th>m. p. (°C)</th>
<th>[α]_D^{31} (c in CHCl₃)</th>
<th>Analysis (%): Found (Required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IIIa</td>
<td>62</td>
<td>0.69</td>
<td>105</td>
<td>-148° (c,0.966)</td>
<td>N: 1.09 (1.15), S: 5.04 (5.24)</td>
</tr>
<tr>
<td>2.</td>
<td>IIIb</td>
<td>71</td>
<td>0.72</td>
<td>110</td>
<td>-10° (c, 0.986)</td>
<td>N: 1.03 (1.12), S: 4.98 (5.10)</td>
</tr>
<tr>
<td>3.</td>
<td>IIIc</td>
<td>69</td>
<td>0.79</td>
<td>126</td>
<td>-90° (c, 0.693)</td>
<td>N: 1.01 (1.15), S: 5.02 (5.10)</td>
</tr>
<tr>
<td>4.</td>
<td>IIId</td>
<td>56</td>
<td>0.75</td>
<td>141</td>
<td>-55° (c, 0.856)</td>
<td>N: 1.07 (1.15), S: 5.05 (5.10)</td>
</tr>
<tr>
<td>5.</td>
<td>IIIe</td>
<td>72</td>
<td>0.82</td>
<td>119</td>
<td>-70° (c, 0.980)</td>
<td>N: 1.08 (1.13), S: 5.11 (5.18)</td>
</tr>
<tr>
<td>6.</td>
<td>IIIf</td>
<td>77</td>
<td>0.88</td>
<td>135</td>
<td>-130° (c, 1.006)</td>
<td>N: 1.07 (1.13), S: 5.09 (1.13)</td>
</tr>
</tbody>
</table>

Antimicrobial studies

All the compounds have been screened for both antimicrobial and antifungal activity using cup plate agar diffusion method by measuring the inhibition zone in mm. The compounds were taken at a concentration of 1 mg/ml using dimethyl sulphoxide (DMSO) as solvent. Amikasin (100 µg/ml) was used as standard for antibacterial activity. The compounds were screen for antibacterial activity against Escherichia coli, Staphylococcus aureus, Proteus vulgaris and Pseudomonas aeruginosa in nutrient agar medium. Amikasin (100 µg/ml) was used as standard for antibacterial activity. The compounds were screen for antifungal activity against Aspergillus niger and Candida albicans in potato dextrose agar medium. Fluconazole (100 µg/ml) as standard for antifungal activity. The results are presented in Table-2.

It has been observed that some of these compounds exhibited interesting microbial activities. IIIb, IIIc exhibited most significant activity against Staphylococcus aureus, IIId exhibited most significant activity against Proteus vulgaris and IIIa and IIIb exhibited most significant activity against Pseudomonas aeruginosa respectively. All the other compounds exhibited low to moderate activity. (Table-2).
The results of antifungal activities are also tabulated in Table-2. IIIa and IIIb are effective towards *Candida albicans*. IIId and IIIe inhibited *Aspergillus niger*. While other compounds inhibited moderate to low activity.

Table-2: Antimicrobial activities of S-hepta-O-benzoyl maltosyl-1-aryldithiocarbamates (IIIa-f).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Antibacterial**</th>
<th>Antifungal**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli</td>
<td>S. aureus</td>
</tr>
<tr>
<td>IIIa</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>IIIb</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>IIIc</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>IIId</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>IIIe</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>IIIf</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Amikacin</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Fluconazole</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**zone of inhibition in mm (15 or less) resistance, (16-20mm) moderate and (more than 20mm) sensitive.

Escherichia coli (*E. coli*), *Staphalococcus aureus* (*S. aureus*), *Proteus vulgaris* (*P. vulgaris*), *Psudomonas auriginosa* (*Ps. auriginosa*), *Candida albicans* (*C. albicans*) and *Aspergillus niger* (*A. niger*).

ACKNOWLEDGEMENTS

Authors are thankful to SAIF, C.D.R.I. Lucknow for providing spectral data and also Dr. S.G. Bhadange, Principal, Shri Shivaji College, Akola for providing necessary facilities.

REFERENCES

[RJC-880/2012]

Adopt **GREEN CHEMISTRY**, Save Our Planet.
We publish papers of Green Chemistry on priority.