PALLADIUM-BORON CATALYST FOR VEGETABLE OILS HYDROGENATION

Abdulmajid M. Alshaibani1,*, Zahira Yaakob1, Ahmed M. Alsobaai2 and Miskandar Sahri3

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Malaysia.
2Department of Chemical Engineering, Faculty of Engineering and Petroleum, Hadhramout University of Science and Technology, Mukalla, Yemen.
3Food Technology and Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board (MPOB), Malaysia.
*E-mail: majeedsh70@yahoo.com

ABSTRACT
Modification of a palladium-supported catalyst was performed in order to improve its activity and trans-isomerisation selectivity (Si) for palm oil hydrogenation. A Pd-B/γ-Al2O3 amorphous alloy was prepared by wet impregnation of Pd (acac)2 on γ-Al2O3 followed by chemical reduction using KBH4. The catalyst was thermally treated at 573 K before hydrogenation and was characterised by the Brunauer-Emmett-Teller surface areas (BET), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). A conventional hydrogenation for palm oil was performed using 0.12 % catalyst at 393 K, 500 kPa and 500 rpm for 1 h. The Pd-B/γ-Al2O3 catalyst exhibited significantly better catalytic activity and trans selectivity comparing to the corresponding Pd/γ-Al2O3 and commercial catalysts.

Keywords: Amorphous materials, sintering, trans fatty acids.

INTRODUCTION
Partial hydrogenation of edible oils is an important process of producing fats with desirable properties for food and nonfood applications1,2. It is used to modify the color, odor, thermal behavior and oxidation resistance of oils3. Hydrogenation is conventionally performed at 413-503 K and 300 kPa hydrogen pressure using nickel supported on silica or alumina. Despite the benefits of using nickel as a catalyst, its major disadvantage is the significant isomerization4,5.

Trans fatty acids TFAs have been reported as a harmful fats for human health6. As a result of that, the customer’s awareness of hydrogenated oils has increased. The issues with TFAs have increased the impetus to discover viable alternatives that can be accessed through catalyst development6. Palladium (Pd) exhibits unique features for hydrogenation due to its high conversion under moderate temperature and the possibility to alter its performance through the addition of modifiers7. Modified Pd can introduce moderation of performance between the catalyst activity and trans selectivity8. Recently, amorphous materials have been widely studied as new catalysts for many reactions, and especially for hydrogenation. Amorphous materials have different chemical and physical properties than their corollary crystalline alloys9. These properties can provide for more active and selective catalytic performance9, 10. Amorphous Pd was scarcely reported in the field of hydrogenation. A Pd-B/SiO2 amorphous catalyst was prepared and used for nitrobenzene hydrogenation first time in 200011, and Pd-B/γ-Al2O3 was used for anthraquinone hydrogenation in 200312. While, a literature search found no reports using Pd-B/γ-Al2O3 catalysts in the field of edible oil hydrogenation.
EXPERIMENTAL

Catalyst preparation
The Pd/γ-Al₂O₃ catalyst was prepared by wet impregnation of palladium on alumina (γ-Al₂O₃) by a similar method previously used⁴. A γ-Al₂O₃ (Alfa Aesar, 60 mesh powder, 150 m²/g) was dried at 423 K for 2 h. Then it was impregnated with a toluene solution of Pd (Acac)₂ (Johnson Matthey) at room temperature under agitation for 24 h. The catalyst was dried at 423 K for 2 h and then calcined at 773 K for 2 h. Unlike the previous preparation method, the drying and calcination were performed in absence of inert gases. The Pd-B/γ-Al₂O₃ catalyst was prepared by the chemical reduction of Pd/γ-Al₂O₃ using aqueous solution containing 0.2 M KBH₄ (Acros organics) and 0.96 M KOH. The KBH₄/Pd²⁺ molar ratio was equal to 3 for total reduction of palladium oxide. The KBH₄ solution was added slowly to the catalyst precursor at low temperature and well agitation. Pd-B/γ-Al₂O₃ was carefully washed using distilled water and subsequently with ethanol¹³. The Pd-B/γ-Al₂O₃ was dried and then annealed at 573 K for 2 h under air atmosphere. Unlike other oil hydrogenation catalysts, this catalyst is high stable against oxidation and does not need to keep in high saturated fat for long time storage.

Catalyst characterisation
The Brunauer-Emmett-Teller (BET, Micromeritics ASAP 2020) surface area was determined using a similar method reported by Fernandez et al⁶. Surface morphology was observed by scanning electron microscopy (SEM, INCAx-sight-7353-Oxford instruments), including the energy-dispersive X-ray spectroscopy (EDX) application for catalyst metal content measurement. Transmission electron microscopy (TEM) was performed on a CM12 transmission electron microscope (Philips).

Catalyst activity measurements
The hydrogenation tests were performed in a 400 ml batch reactor equipped with devices for controlling the temperature, pressure and agitation. The batch consisted of 250 g of refined, bleached and deodorised palm oil supplied by the Yemen Company for Ghee and Soap Industry (YCGSI). The hydrogenation was performed using 0.12 % catalyst at 393 K, 500 kPa and 500 rpm for 1 h. The composition (%) of the palm oil samples applied for hydrogenation was C₁₈:0 = 6.0, C₁₈:1 = 40.75, C₁₈:2 = 7.75 and C₁₈:3 = 0.1. The reactor was supplied with hydrogen (chromatographic grade) at a constant pressure as required for each test. The tests were performed using the catalysts shown in Table-1. Pd/γ-Al₂O₃ and Escat were used for the purpose of comparison, where Escat is a commercial Pd/γ-Al₂O₃ catalyst supplied by (BASF, Netherlands).

Analytical and calculation methods
The analyses of fatty acids, trans fatty acids and iodine values were performed using the corresponding American Oil Chemists’ Society (AOCS) test methods¹⁴. Calculation of catalyst activity, trans selectivity and C = C conversion were performed by the methods used in literatures previously¹⁵-¹⁷.

Table-1: The metallic composition of the catalyst samples.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pd content (%)</th>
<th>Catalyst loading (mg Pd/g oil) x 10³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd/γ-Al₂O₃</td>
<td>0.73</td>
<td>8.8</td>
</tr>
<tr>
<td>Pd-B/γ-Al₂O₃</td>
<td>0.73</td>
<td>8.8</td>
</tr>
<tr>
<td>Pd/γ-Al₂O₃ (Escat)</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

⁵ Palladium content in the catalyst. ⁶ Palladium metal concentration in the oil.

RESULTS AND DISCUSSION

Catalyst characterization
The BET surface area for Pd/γ-Al₂O₃ was 164.3 m²/g. However, it was reduced to 121.3 m²/g for Pd-B/γ-Al₂O₃. This reduction in surface area could be attributed to (1) an increase in the metal loading resulted...
from chemical reduction, or (2) thermal treatment at 573 K that could cause the Pd-B alloy particles sintering and gathering18. Pore diameter, however, was increased slightly from 5.71 nm for Pd/γ-Al\textsubscript{2}O\textsubscript{3} to 5.84 nm for Pd-B/γ-Al\textsubscript{2}O\textsubscript{3}. This increase can be attributed to the thermal treatment performed for Pd-B/γ-Al\textsubscript{2}O\textsubscript{3}. The pore diameter of both Pd/γ-Al\textsubscript{2}O\textsubscript{3} and Pd-B/γ-Al\textsubscript{2}O\textsubscript{3} is considered to be suitable for oil and fat hydrogenation according to the Coenen classification19.

The morphology of Pd-B/γ-Al\textsubscript{2}O\textsubscript{3} was confirmed by means of SEM. There were pure, clean, and small particles appeared on the surface of Pd/γ-Al\textsubscript{2}O\textsubscript{3} as shown in Fig. 1A. However, Pd-B/γ-Al\textsubscript{2}O\textsubscript{3} exhibited a "cotton-like" porous morphology in which the support was covered by fine white coating of Pd-B amorphous alloy as shown in Fig. 1B20.

Pd-B/γ-Al\textsubscript{2}O\textsubscript{3} exhibited a good distribution of Pd sites on the alumina support as shown in Fig. 1C. The EDX analysis detected both Pd and B, confirming the existence of Pd-B alloys on the catalyst particles and confirming that the average palladium content was 0.73% as shown in Fig. 2.

Fig. 3 shows the TEM images of the prepared catalysts. The average particle size was 5.8 nm and 6.9 nm for Pd/γ-Al\textsubscript{2}O\textsubscript{3} and Pd-B/γ-Al\textsubscript{2}O\textsubscript{3} respectively. The bigger size of Pd-B/γ-Al\textsubscript{2}O\textsubscript{3} can be attributed to the aggregation and growth of metal particles during chemical reduction and thermal treatment for the Pd-B/γ-Al\textsubscript{2}O\textsubscript{3} catalyst.

Catalyst activity measurement

The C = C saturation conversion for Pd-B/γ-Al\textsubscript{2}O\textsubscript{3} was 7.82% compared to 5.31 and 4.50% for Escat and Pd/γ-Al\textsubscript{2}O\textsubscript{3} catalyst samples respectively. This result was compatible with the catalyst activity of Pd-B/γ-Al\textsubscript{2}O\textsubscript{3} which is higher than both the Pd/γ-Al\textsubscript{2}O\textsubscript{3} and Escat samples as shown in Fig. 4.
Fig. 3: EDX result for metallic content of Pd-B/γ-Al₂O₃ catalyst sample.

Fig. 4: Hydrogenation of palm oil. T = 393 K, P = 500 kPa, agitation = 500 rpm, reaction time = 1 h and catalyst loading 8.8 ppm for Pd/γ-Al₂O₃ and Pd-B/γ-Al₂O₃ but 12 ppm for Escat.

The higher activity of Pd-B/γ-Al₂O₃ was attributed to a stronger capability for hydrogen adsorption as well as higher concentration of active sites. These results were in agreement with those previously reported of using similar catalyst for the hydrogenation of different hydrocarbons.

A reduction in the trans selectivity (Sₜ) was also noticed from 1.71 for Pd/γ-Al₂O₃ to 1.66 for Escat and 1.3 for Pd-B/γ-Al₂O₃ catalyst. This reduction in selectivity may be correlated with the effect of the metalloid element (boron) as an electron donor that changes the electron density of the Pd atom. Unlike the previous results of oil hydrogenation using palladium modified catalyst, it is worthwhile to emphasise that the reduction in trans isomerisation selectivity (Sₜ) for Pd-B/γ-Al₂O₃ was not correlated with decline in catalyst activity.

CONCLUSION

An amorphous alloy catalyst, Pd-B/γ-Al₂O₃, was prepared by impregnation and chemical reduction. Analysis showed that chemical reduction has clear effect on the catalyst behaviour. Pd-B/γ-Al₂O₃ exhibited higher activity and better trans selectivity than Pd/γ-Al₂O₃ and Escat catalysts. The results suggest that the catalyst morphology can be considered as a factor affecting on the hydrogenation activity and trans isomerisation selectivity.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support provided by Universiti Kebangsaan Malaysia (UKM) by the fund (MOSTI 03-01-02-SF0696), Yemen Company for Ghee and soap industry (YCGSI) and Food Technology and Nutrition Unit-Malaysian Palm Oil Board (MPOB).
REFERENCES

Water: Research & Development

[Water R&D]
www.waterrnd.com
ISSN: 2249-2003
[Abstracted in : Chemical Abstracts Service, USA and CAB(I), UK]

WaterR&D is an international Research Journal, dedicated to ‘Water’. It is a truly interdisciplinary journal on water science and technology. It’ll showcase the latest research related to Water in the field of chemistry, physics, biology, agricultural, food, pharmaceutical science, and environmental, oceanographic, and atmospheric science. It includes publication of reviews, regular research papers, case studies, communications and short notes.

Manuscript Categories: Full-length paper, Review Articles, Short/Rapid Communications.

Manuscripts should be addressed to:
E-mail: waterrd@gmail.com