RASĀYAN J. Chem.

Vol. 10 | No. 2 | 522 - 527 | April - June | 2017 ISSN: 0974-1496 | e-ISSN: 0976-0083 | CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in

SYNTHESIS AND CRYSTALLOGRAPHY OF A DIMERIZED CHALCONE DERIVATIVE

Sanjay Kumar¹, Vinutha V Salian², B. Narayana², B. K. Sarojini³, Sumati Anthal¹ and Rajni Kant¹*

¹X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi-180006, India

²Department of Studies in Chemistry, Mangalore University, Mangalagangothri-574 199, India.

ABSTRACT

The chalcone derivative, [3-(4-Chlorobenzoyl)-2,4-bis((4-propan-2-yl)phenyl)cyclobutyl](4-chlorophenyl)methan one ($C_{36}H_{34}Cl_2O_2$), crystallizes in the monoclinic crystal system with space group $P2_1/c$ and unit cell parameters: a = 18.4793(1)Å, b = 14.0239(7)Å, c = 11.8370(1)Å, $\beta = 99.904(8)^\circ$ and Z = 4. The crystal structure was solved using direct methods and refined by full matrix least squares procédures to a final R-factor of 0.0969 for 2319 observed reflections. In the crystal, $C-H\cdots O$ contacts connect the molecule into a three-dimensional network. The molecule also contains two $C-H\cdots O$ intramolecular interactions which stabilizes the crystal structure.

Keywords: Chalcone, Chlorobenzoyl, Direct methods, Crystallography, Intramolecular interactions.

© RASĀYAN. All rights reserved

INTRODUCTION

Chalcones comprise one of the most commonly occurring classes of medicinally important natural compounds as they possess various biological activities. Leg. Cyclobutane-containing natural products have, e.g., been reported for Combretum albopunctatum and Goniothalamus thwaitesii. Because of various biological activities of these natural compounds, the synthesis of cyclobutane-derived compounds is one of the most intensively studied photochemical reactions of chalcone derivatives. The nonlinear optical properties of the different chalcone derivatives have also been reported. These α , β -unsaturated ketones possess a wide variety of biological activities, including anti-leishmanial, anti-invasive anti-tuberculosis, anti-fungal, anti-malarial.

The crystal structures of some dimerized chalcones such as r-1,c-2,t-3,t-4-1,3-bis(4-methoxyphenyl)-2,4-bis(5-phenyl-1,3,4-oxadiazol-2-yl)cyclobutane 1,4-dioxane solvate¹⁵ and r-1,c-2,t-3,t-4-1,2-bis(4-methoxyphenyl)-3,4-bis(5-phenyl-1,3,4-oxadiazol-2-yl) cyclobutane¹⁶ exist in the literature. In view of the pharmacological importance and potential of chalcone derivatives, the synthesis of such a compound was attempted and its molecular structure validated X-ray crystallographically.

EXPERIMENTAL

Synthesis

To a mixture of cuminaldehyde (1.5 mL, 0.01 mol) and 4-chloroacetophenone (1.2mL, 0.01 mol) in ethanol (50mL), 15 mL of 10% sodium hydroxide solution was added and stirred at 0–5°C for 3 hours. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals suitable for X-ray diffraction study was grown by slow evaporation method and was dimerized during crystallization (M.P.: 467-469 K). The synthetic route for the preparation of the compounds is given in Scheme-1.

³Department of Industrial Chemistry, Mangalore University, Mangalagangothri-574 199, India. *E-mail: rkant.ju@gmail.com

Scheme-1: Synthesis of [3-(4-Chlorobenzoyl)-2,4-bis((4-propan-2-yl)phenyl)cyclobutyl](4-chlorophenyl)methanone.

Crystal structure determination

X-ray intensity data of the crystal of dimensions 0.30*0.20*0.20 mm³ having well defined morphology was collected on *X'calibur* CCD area-detector diffractometer equipped with graphite monochromated Mo $K\alpha$ radiation ($\lambda=0.71073$ Å). The intensities were measured by employing ω scan mode for the diffraction angle ranging from 3.39 to 25° . X-ray intensity data of 10623 reflections were collected at 293(2) K and out of these reflections 5176 were found unique. 2319 reflections were treated as observed by employing the criterion I>2 σ (I). Data was corrected for Lorentz-polarization and absorption factors. The structure was solved by direct methods using SHELXS97¹⁷ and was refined using SHELXL97.¹⁷ All non-hydrogen atoms of the molecule were located in the best E-map. All the hydrogen atoms were geometrically fixed and allowed to ride on the corresponding carbon with C-H= 0.93-0.97Å and U_{iso} = 1.2 U_{eq} (C), except for the methyl groups where U_{iso} (H) = 1.5 U_{eq} (C). The final refinement cycles converged to an R-factor of 0.0969 [wR(F²) = 0.1554] for 2319 observed reflections. A relatively large value of R-factor could be due to poor quality crystallization of this material. Residual electron densities ranges from -0.239 to 0.229eÅ⁻³. Geometrical calculations of the molecule were done using the WinGX¹⁸, PARST¹⁹ and PLATON²⁰ software.

Crystallographic information has been deposited at the Cambridge Crystallographic Data Centre with CCDC number 1530154. This data can be accessed free of charge at Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The crystallographic and refinement data of the crystal is given in Table-1.

Table-1: Crystallographic characteristic, the X-ray data collection and structure-refinement parameters for $C_{36}H_{34}Cl_2O_2$.

parameters for 0,011,401202.			
1530154			
Monoclinic, P2 ₁ /c, 4			
18.4793(15), 14.0239(7), 11.8370(1)			
99.904(8)			
3021.9(4)			
1.252			
0.71073			
0.246			

T, K	293(2)	
Sample size, mm ³	0.30 * 0.20 * 0.20	
Diffractometer	X'calibur Sapphire3 CCD area-detector	
Scan mode	ω scan	
Absorption correction	multi-scan	
T _{min} , T _{max}	0.63965, 1.00000	
θ range, deg	3.39→25	
h, k, l ranges	$h = -21 \rightarrow 15, k = -16 \rightarrow 16, l = -14 \rightarrow 13$	
Reflections total/unique	10623/ 5176	
Reflections observed $[I > 2\sigma(I)]$	2319	
R _{int}	0.0681	
$R_{ m sigma}$	0.1338	
F(000)	1200	
R	0.0969	
$wR(F^2)$	0.1554	
$(\Delta/\sigma)_{ m max}$	0.00	
Number of refined parameters	366	
S	1.020	
$\Delta \rho_{\text{max}}/\Delta \rho_{\text{min}}, \text{ e/Å}^3$	0.229/-0.239	
Programs used	SHELXS97, SHELXL97, PARST, PLATON, ORTEP	

RESULTS AND DISCUSSION

The molecular structureis shown in Figure-1(ORTEP).²¹ It comprises of dimerized chalcone derivative around a cyclobutane. The cyclobutane moiety bears one aromatic substituent on each carbon atom. The structural parameters, including bond distances and bond angles (Table-2) show normal geometry.²²

Table-2: Selected bond distances and bond angles.

Bond Distances (Å)		Bond Dist	ances (Å)
C1–C2	1.441(1)	C16-CL1	1.728(7)
C2-C3	1.428(9)	C19-C20	1.505(6)
C2-C4	1.531(8)	C19-C29	1.572(7)
C7-C10	1.489(6)	C23-C26	1.527(9)
C10-H10	0.9800	C26-C27	1.307(1)
C10-C11	1.566(7)	C26-C28	1.395(1)
C10-C29	1.548(6)	C28-H28A	0.9600
C11-C12	1.498(7)	C29-C30	1.498(6)
C11-C19	1.523(6)	C30-O2	1.220(5)
C12-O1	1.217(6)	C30-C31	1.484(7)
C12-C13	1.482(7)	C34-CL2	1.724(6)
Bond Angles(°)		Bond A	ngles(°)
C1-C2-C3	113.2(8)	C19-C20-C21	122.9(5)
C3-C2-C4	115.2(7)	C19-C29-C30	116.2(4)
C6-C7-C10	120.8(5)	C20-C19-C29	120.2(4)
C10-C11-C19	90.4(4)	C23-C26-C27	119.2(8)
C10-C29-C19	89.3(4)	C27-C26-C28	124.5(8)
C11-C19-C29	89.0(4)	C29-C10-C11	88.4(3)
C13-C12-O1	120.1(6)	C29-C30-C31	118.3(5)
C15-C16-CL1	119.2(7)	C33-C34-CL2	119.1(5)

Fig.-1: ORTEP view of the molecule. Displacement ellipsoids are shown at the 40% probability level along with atomic labeling scheme. Hydrogen atoms are drawn at arbitrary radii and are not labeled for clarity. The graph-set motifs are also shown (dotted lines).

The length of the bonds C10-C11, C10-C29 and C7-C10, C11-C12 is similar to the corresponding distances as observed in case of some other tetra-aryl substituted cyclobutanes. The distances of the bonds opposite to each other in the cyclobutane have nearly the same value and the endocyclic bond angles being very close to 90°; thus assume the shape of a rectangle. The propan-2-yl group and the phenyl rings lying on both sides of cyclobutane are not coplanar [torsion angle being C1–C2–C4–C5 (108.0(1)°) and C24–C23–C26–C27 (150.8(1)°), respectively (Table-3)].

The two chlorobenzoyl rings (the dihedral angle between them being $3.22(2)^{\circ}$) and the two phenyl rings (the dihedral angle between them being $8.95(2)^{\circ}$) are close to being planar. The dihedral angle between cyclobutane and each phenyl ring is $81.23(2)^{\circ}$ and $75.87(2)^{\circ}$, respectively, while the dihedral angle between the cyclobutane ring and each of the chlorobenzoyl ring is $50.74(2)^{\circ}$ and $53.29(2)^{\circ}$, respectively. The C11 and C19 atoms of the cyclobutane are deviated significantly (deviations being 0.0893(5) Å and -0.0889(5) Å respectively). The relative orientation of all the four aromatic substituents attached to central cyclobutane ring corresponds to *cis-trans-cis-trans* and this may be due to molecular centrosymmetry.

In the crystal structure, there exists C10-H10...O2 and C19-H19...O1 intramolecular interactions, both resulting in the formation of S(5) graph-set motifs. Only one intermolecular hydrogen bond C22-H22...O1 is observed that links molecule into infinite chains along the y-direction (Figure-2). Details of intra/inter-molecular hydrogen bonds are given in Table-4.

Table-3: Selected torsion angles

Torsion Angles(°)		Torsion A	Angles(°)
C1-C2-C4-C5	108.0(1)	C14-C15-C16-CL1	-179.6(5)
C1-C2-C4-C9	-70.2(1)	C18-C13-C12-O1	-177.2(6)

C6-C7-C10-C11	119.5(6)	C19-C11-C10-C29	-13.1(4)
C7-C10-C11-C12	-14.6(7)	C19-C20-C25-C24	175.8(6)
C7-C10-C29-C30	132.9(5)	C20-C19-C29-C30	-21.2(7)
C8-C7-C10-C29	39.7(8)	C22-C23-C26-C28	150.5(1)
C11-C12-C13-C14	-176.0(5)	C24-C23-C26-C27	150.8(1)
C12-C11-C10-C29	-134.7(5)	O2-C30-C31-C32	162.2(5)
C12-C11-C19-C20	-99.3(6)	C36-C35-C34-CL2	-179.3(5)

Fig.-2: Packing of the molecule along *b-axis*.

Table-4: Hydrogen bonding geometry (e.s.d.'s in parentheses)

D–H…A	D–H(Å)	HA(Å)	DA(Å)	D-HA(°)
C10-H10O2	0.98	2.38	2.821(6)	106
C19-H19O1	0.98	2.44	2.833(7)	103
C22-H22O1 ⁱ	0.93	2.53	3.203(7)	130

Symmetry code: (i) x, 3/2 - y, 1/2 + z

ACKNOWLEDGMENT

Rajni Kant is thankful to the Indian Council of Medical Research and the Department of Science and Technology, New Delhi for funding under sponsored research projects (No. BIC/12(14)/2012 and EMR/2014/000467). BN thanks UGC for financial assistance through BSR one time grant for the purchase of chemicals. VVS thanks Mangalore University for research facilities.

REFERENCES

- 1. J. R. Dimmock, D. W. Elias, M. A. Beazely and N. M. Kandepu, *Curr. Med. Chem.*, **6**, 1125 (1999).
- 2. J. P. J. Marais, D. Ferreira and D. Slade, *Phytochemistry*, **66**, 2145 (2005).
- 3. D. R. Katerere, A. I. Gray, A. R. Kennedy, R. J. Nash and R. D. Waigh, *Phytochemistry*, **65**, 433 (2004).
- 4. V. Seidel, F. Bailleul and P. G. Waterman, *Phytochemistry*, **55**, 439 (2000).
- 5. B. K. Sarojini, B. Narayana, B. V. Ashalatha, J. Indira and K. G. Lobo, *J. Cryst. Grow.*, **295**, 54 (2006).
- 6. P. Poornesh, S. Shettigar, G. Umesh, K. B. Manjunatha, K. P. Kamath, B. K. Sarojini and B. Narayana, *Optical Materials*, **31**, 854 (2009).
- 7. J. Indira, P. P. Karat and B. K. Sarojini, J. Cryst. Growth, 242, 209(2002).
- 8. S. Shettigar, G. Umesh, K. Chadrasekharan, B. K. Sarojini and B. Narayana, *Optical Materials*, **30**, 1297 (2008).
- 9. S. F. Nielsen, S. B. Christensen, G. Cruciani, A. Kharazmi and T. Liljefors, J. Med. Chem., 41, 4819 (1998).
- 10. S. Mukherjee, V. Kumar, A. K. Prasad, H. G. Raj, M. E. Bracke, C. E. Olsen, S. C. Jain and V. S. Parmar, *Bioorg. Med. Chem.*, **9**, 337 (2001).
- 11. Y. M. Lin, Y. Zhou, M. T. Flavin, L. M. Zhou, W. Nie and F. C. Chen, *Bioorg. Med. Chem.*, **10**, 2795 (2002).
- 12. S. N. Lopez, M. V. Castelli, S. A. Zacchino, J. N. Dominguez, G. Lobo, C. C. Jaime, J. C. G. Cortes, J. C. Ribas, C. Devia, M. R. Ana and D. E. Ricardo, *Bioorg. Med. Chem.*, **9**, 1999 (2001).
- 13. A. Agarwal, K. Srivastava, S. K. Puri and P. M. S. Chauhan, *Bioorg. Med. Chem.*, 13, 4645 (2005).
- 14. S. Kumar, A. Jayashree, B. Narayana, B. K. Sarojini, L. Kótai, S. Anthal and R. Kant, *Eur. Chem. Bull.*, 5, 501 (2016).
- 15. Y. Zheng, J. P. Zhuang, W. Q. Zhang, X. B. Leng and L. H. Weng, Acta Cryst., E57, o1029 (2001).
- 16. J. P. Zhuang and Y. Zheng, *Acta* Cryst., **E58**, o1195 (2002).
- 17. G. M. Sheldrick, University of Gottingen, Germany, (1997).
- 18. L. J. Farrugia, Journal of Applied Crystallography, 32, 837 (1999).
- 19. M. Nardelli, Journal of Applied Crystallography, 28, 659 (1995).
- 20. A. L. Spek, Acta. Crystallographica, **D65**, 148(2009).
- 21. L. J. Farrugia, Journal of Applied Crystallography, 30, 565 (1997).
- 22. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. OrpenandR. Taylor, *Journal of the Chemical Society Perkin Transactions*, **2**, S1 (1987).
- 23. P.S.Nayak, B.Narayana, H.S.Yathirajan, T.Gerber, E.Hosten and R.Betz, *Acta Cryst.*, **E68**, o3272 (2012).
- 24. S. Zhang and J. Zhuang, *Acta Cryst.*, **E70**, o311 (2014).

[RJC-1607/2017]