PHYSICOCHEMICAL PROPERTIES, GC-MS ANALYSIS, AND ANTIBACTERIAL ASSAY OF *Citrus limon* PEELS ESSENTIAL OIL AGAINST ANTIBIOTIC RESISTANT *Escherichia Coli*

Nur Aini Khairunnisa¹, Yuandani², Abdi Wira Septama³, Sony Eka Nugraha⁴ and Sufitni⁵

¹Graduate School of Pharmaceutical Science Program, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
²Department of Pharmacology, Faculty of Pharmacy Universitas Sumatera Utara, Medan, Indonesia
³Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, 15314 Indonesia
⁴Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
⁵Department of Anatomy, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia

 بصورة مرجعية: yuandani@usu.ac.id

ABSTRACT

Essential oils (EOs) produced naturally by plants have been used as antimicrobial agents despite the majority of compounds have not been studied. The study was conducted to assess the effect of EOs found in *Citrus limon* peels against antibiotic resistance of *E. coli* by quantifying the specific gravity, refractive index, and GC-MS. The result of GC-MS presented that D-limonene, α-citral, and β-citral are the major constituents of *C. limon* EO, presenting 56.85; 13.24; and 10.40% of the oil content, respectively. Tests on the essential oil of *C. limon* confirm its potential antibacterial activity. This assertion was supported by the MIC and MBC values obtained at 250 μg/mL and 500 μg/mL, respectively. Meanwhile, tetracycline showed identical MIC and MBC at 125 μg/mL. The interaction between essential oil and tetracycline was evaluated using a checkerboard assay. Moreover, *C. limon* peels essential oil had a synergistic to decrease biofilm formation in bacterial tested. In addition, the combination of *C. limon* peels essential oil and tetracycline illustrated potential activities to lysis the cells and inhibit the efflux pumps of *E. coli*. The result suggests the combination of *C. limon* peels essential oil and tetracycline could be used to eradicate antibiotic-resistant *E. coli*.

Keywords: Citrus Limon, GC-MS, Antimicrobial, Biofilm, Membrane Permeability, Efflux Pump.

INTRODUCTION

The commitment to ensuring food safety is necessary, due to this concern reaching prominence in middle-income countries around the world.¹ Therefore, multiple food industries vie to enhance product safety. Meanwhile, the majority of foodborne infections are caused by *Campylobacter, Salmonella sp, and Escherichia coli* which are known as the most common types of bacteria that cause food-borne illnesses.² It is believed that people have applying the EO for industrial markets (perfumes and flavors) for ages, however, there has been a focus on their putative antibacterial properties.³⁴⁵ Citrus is economically beneficial for preventing infectious organisms.⁶ The EOs of *Citrus sp.* have been reported for their pharmacological activities, such as antioxidant and anticancer.⁶ Moreover, other studies revealed *Citrus* EO activity against foodborne pathogens; *Listeria spp*, *Salmonella spp*, *Escherichia coli*, *Campylobacter jejuni*, *Listeria monocytogenes*, *Bacillus cereus*, and *Staphylococcus aureus*. This study assessed the peel's chemical constituents for multiple antibacterial resistance mechanisms, such as antibiofilm, efflux pump inhibitor, membrane permeability activities as well as the synergistic effect of *C. limon* EOs with tetracycline.

http://doi.org/10.31788/RJC.2023.1638442

This work is licensed under a CC BY 4.0 license.
EXPERIMENTAL

Materials
The materials such as tetracycline, phosphate buffer saline (PBS), Tablets of crystal violet, anhydrous sodium sulfate, Dimethyl sulfide (DMSO), and microbial agar were purchased from several notorious pharmaceutical companies, such as Sigma-Aldrich, Merck, Becton, and Dickinson for analytical purposes.

Bacterial Strains
The bacterial resistance was obtained by the MERO Foundation, Bali, Indonesia.

Essential Oil Extraction
Citrus limon was collected from Medan, North Sumatera, Indonesia. The procedures refer to the previous study\(^7\) with slight modification. The essential oils from *C. limon* peels were extracted using hydrodistillation in a Clevenger apparatus and modified for 6 hours, with distilled water.\(^7\)

Determination of the Physicochemical Properties of *Citrus limon* Essential Oil
The determination of *C. limon* essential oil is divided into two tests, there are the specific gravity and refractive index, which are benefits to illustrate the purity and quality of the EO. A pycnometer in 1-ml volume is used to calculate the specific gravity, whereas an Abbe Refractometer is applied for counting the refractive index.

Chemical Compositions Analysis of Essential Oil
Analysis of the chemical compositions of *C. limon* essential oil using GC-MS.\(^8\) Briefly, the data were collected and determined by referring to the National Institute of Standards and Technology (NIST) WebBook, to obtain the peak area of each chromatogram for identifying and calculating.

Determination Antibacterial Activity
Antibacterial activity was determined by using the microdilution method to reach the minimal inhibitory concentration (MIC) by several modifications to previous studies.\(^9,10\) Briefly, bacterial suspensions were adjusted to 0.5 McFarland and diluted with 0.9% sodium chloride to yield 1 x 10\(^6\) CFU/mL. Furthermore, the bacterial suspension was then added to 96-well microplates containing twofold dilutions of *C. limon* essential oil and 24 hours of incubation at 37 °C.

Checkerboard Assay
This test was conducted using the checkerboard method\(^8,11\) with several modifications. Briefly, *C. limon* essential oil was diluted twofold with BHI along the x-axis of microplates, while the y-axis for antibiotics a similarly diluted. Each well was then filled with a bacterial suspension containing approximately 1 x 10\(^6\) CFU/mL and stored for at least 24 hours at 37 °C.

Anti-biofilm Formation Assay
Antibiofilm formation was tested by using 96-well microplates.\(^8\) Briefly, the wells were filled with sample and bacteria suspension, then incubated at 37 °C for 24-48 hours, while the control consisted of untreated wells. After one day, rinse the wells with PBS and incubate with 200 ml of crystal violet (0.3% in DMSO) added selectively. The degradation of biofilm was subsequently measured at 560 nm.

Loss of 260 nm Absorbing Material
The overnight culture of the bacterial was cleaned and resuspended in 0.9% sodium chloride solution, and the concentration was made at 5 x 10\(^8\) CFU/mL, by combining *C. limon* EO and Tetracycline at MIC, and synergy concentration, while the control was given no treatment. Each sample was saved in an incubator for a day at 37 °C. The optical density measured by the UV-Vis Spectrophotometer was 260 nm. This assay was taken thrice. This test was conducted with several modifications compared to the previous study.\(^8\)

Bacteriolysis Activity
A bacteriolysis test was conducted as stated by the previous study.\(^12,8\) Briefly, *E. coli* bacteria from an overnight culture were suspended in normal saline. After obtaining the final concentration at 0.5 McFarland, the synergistic combination of *C. limon* essential oil and tetracycline was added to the bacterial suspensions and cultured in an incubator at 37 °C. Tetracycline and DMSO were used for control. The measurement by
using a UV-Vis spectrophotometer, the absorbance of the supernatant at 260 nm (OD260) and 590 nm (OD590). This assay was taken thrice.

Quantify the Total Amount of Ethidium Bromide (EtBr)

E. coli were cultivated in 10 ml of Sodium Chloride until they reached the mid-log phase, which can be detected at 600 nm. Based on the MIC and FICI of *C. limon* EO, 50 μL of *C. limon* EO was added to a 96-well black microplate to create the sample for analyzing EPI. 100 μL of *E. coli* suspension was added, and the final concentration was calculated to be 0.4 mg/L. Furthermore, the 96-well was saved in an incubator at 37 °C for 30 minutes. In addition, 50 mL of EtBr was applied to the microplates, and the absorbance of the bacterial EPIs was detected. The fluorescence plate reader was used to conduct the EtBr accumulation assay (wavelength excitation of 530 nm and emission of 605 nm), and the absorbance was measured four different times (0, 5, 15, and 45 minutes). The results are calculated by the value of the Relative Fluorescent Unit (RFU). The method was conducted as previously described with several modifications.

RESULTS AND DISCUSSION

Identifications, Yields, and Chemical Profiles of *Citrus limon* Essential Oil

In this study, *C. limon* was identified at Medanese Herbarium Plant Systematics Laboratory (MEDA), Medan, Indonesia. As a result, the values of yield, specific gravity, and refractive index were 0.9%; 0.853; and 1.4632, respectively which indicate the quality of the EO obtained. Table-1 shows around 40 compounds were detected. Monoterpene was found as the most abundant compound with a percentage area of 60.36%. As mentioned by a previous study, the constituent of *C. limon* essential oil was limonene at 43.07; 68.7; and 90.41%, this varies depending on plant variety and geographical region.

<table>
<thead>
<tr>
<th>No.</th>
<th>Determined Constituents</th>
<th>Area (%)</th>
<th>RT (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoterpene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1R-α-Pinene</td>
<td>0.4</td>
<td>6.469</td>
</tr>
<tr>
<td>2</td>
<td>β-Pinene</td>
<td>0.7</td>
<td>7.225</td>
</tr>
<tr>
<td>3</td>
<td>B-myrcene</td>
<td>2.14</td>
<td>7.377</td>
</tr>
<tr>
<td>4</td>
<td>D-Limonene</td>
<td>56.85</td>
<td>8.183</td>
</tr>
<tr>
<td>5</td>
<td>γ-Terpine</td>
<td>0.06</td>
<td>8.561</td>
</tr>
<tr>
<td>6</td>
<td>Neo- allo-oicinene</td>
<td>0.21</td>
<td>9.607</td>
</tr>
<tr>
<td>Oxygenated Monoterpene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Linalool</td>
<td>1.83</td>
<td>9.179</td>
</tr>
<tr>
<td>2</td>
<td>Citronellal</td>
<td>0.19</td>
<td>9.998</td>
</tr>
<tr>
<td>3</td>
<td>Citronellol</td>
<td>0.25</td>
<td>10.137</td>
</tr>
<tr>
<td>4</td>
<td>3,6-Octadienal, 3,7-dimethyl-</td>
<td>0.50</td>
<td>10.414</td>
</tr>
<tr>
<td>5</td>
<td>1,4-terpine</td>
<td>0.20</td>
<td>10.502</td>
</tr>
<tr>
<td>6</td>
<td>L-α-Terpineol</td>
<td>1.47</td>
<td>10.729</td>
</tr>
<tr>
<td>7</td>
<td>Citral</td>
<td>3.33</td>
<td>11.170</td>
</tr>
<tr>
<td>8</td>
<td>β-Citral</td>
<td>10.40</td>
<td>11.384</td>
</tr>
<tr>
<td>9</td>
<td>Lemonol</td>
<td>2.49</td>
<td>11.523</td>
</tr>
<tr>
<td>10</td>
<td>α-Citral</td>
<td>13.24</td>
<td>11.813</td>
</tr>
<tr>
<td>11</td>
<td>Nerol</td>
<td>0.14</td>
<td>12.922</td>
</tr>
<tr>
<td>12</td>
<td>Trans-2-Decenol</td>
<td>0.15</td>
<td>13.653</td>
</tr>
<tr>
<td>13</td>
<td>α-Citral</td>
<td>0.27</td>
<td>21.114</td>
</tr>
<tr>
<td>14</td>
<td>Nerolic Acid</td>
<td>0.21</td>
<td>22.236</td>
</tr>
<tr>
<td>Sesquiterpene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>α-Trans-Bergamotene</td>
<td>0.65</td>
<td>13.981</td>
</tr>
<tr>
<td>2</td>
<td>β-Sesquiphellanderene</td>
<td>0.05</td>
<td>14.182</td>
</tr>
<tr>
<td>3</td>
<td>β-Cis-Farnesene</td>
<td>0.07</td>
<td>14.661</td>
</tr>
<tr>
<td>4</td>
<td>Beta-Bisabolene</td>
<td>0.86</td>
<td>14.926</td>
</tr>
<tr>
<td>Oxygenated Sesquiterpene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Trans-Farnesol</td>
<td>0.14</td>
<td>12.115</td>
</tr>
</tbody>
</table>
Antibacterial Activity
According to the study, *C. limon* EO exhibited significant antibacterial activity for combating bacterial resistance of *E. coli* strains. This finding was in agreement with a previous study that reported that terpene derivatives found in *Citrus* EO, including limonene, nerol, and myrcene were known to inhibit both gram bacteria (*Staphylococcus aureus* and *E. coli*).\(^{19}\)

Checkerboard Test
The checkerboard test resulted in a synergistic effect between *C. limon* EO and tetracycline. The majority of *C. limon* EO components are known to diffuse in bacterial membranes, causing cytoplasmic loss, and modification of ion transports.\(^{20}\) Therefore, *C. limon* EO and tetracycline function synergistically against the bacteria.\(^{21}\) (Table-2)

<table>
<thead>
<tr>
<th>Citrus EOs-Tetracycline</th>
<th>MIC k (µg/mL)</th>
<th>MIC m (µg/mL)</th>
<th>FIC Index</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus limon Tetracycline</td>
<td>250</td>
<td>7.8</td>
<td>0.5</td>
<td>Synergy</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>125</td>
<td>62.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: k = alone; m = combination

Antibiofilm Formation
Microorganisms were capable of forming biofilms.\(^{22,23}\) As shown in Fig.-1, this result indicated that less concentration of *C. limon* EO allowed to inhibit biofilm formation by twofold more than *C. limon* EO alone. Previous studies also supported this result by mentioning that limonoids adequate to inhibit cell signaling of quorum sensing and biofilm.\(^{23,24}\)

![Fig.-1: The Effect of Essential Oils of *Citrus limon* and Tetracycline in Biofilm Degradation. *P*<0.05 Significant Different with Respective Control](image)

Loss of 260 nm Absorbing Material
In Fig.-2, it can be seen that the combination of *C. limon* EO and tetracycline disrupted *E. coli* cell leakage compared to other samples. Previous study supports this result, by mentioning that essential oil consists of multiple compounds enabled to impaire membrane structure and cause a loss of membrane integrity.\(^{25,26}\)
Membrane Permeability Activity

According to the results, the mixture of *C. limon* essential oil and tetracycline was able to lyse *E. coli* cells by absorbing more than half of the crystal violet (55%) compared to *C. limon* essential oil and control (Fig. 3). In this part, the increase in crystal violet absorption is likely attributable to the expansion of essential oil-treated bacterial cells.27

Quantification of Intracellular EtBr Concentration

The results in Fig.-4 can be concluded that the combination of *Citrus limon* essential oil showed the ability to block multidrug efflux pump in a clinical isolate of *E. coli*, which indicates their potential compounds for a wider range of pump-inhibiting activities against multidrug-resistant pathogens.

Terpene derivatives were also reported as significant efflux pump inhibitors (EPIs) in a wide range of bacterial strains.28 The spread of infection by the bacterial resistance of *E. coli* has been expanding
worldwide and caused foodborne outbreaks for the last five years. Regarding this condition, there is an urgent need to seek an alternative approach to overcome the outbreaks. Utilizing natural antibacterial agents and antibiotics with a synergistic effect is a prominent method for combating this.

CONCLUSION
The essential oil of *C. limon* has antibiotic activity against gram-negative microorganisms. In addition, multiple mechanisms of *C. limon* essential oil to inhibit tested bacterial strains have been reported, including inhibiting biofilm formation, disrupting membrane permeability, and producing efflux pump inhibitors to inactivate efflux pumps in most resistant *E. coli* strains. Therefore, to evaluate the bioavailability, efficacy, and toxicity of *C. limon* essential oil combined with antibiotics, additional in vivo studies are urgently required.

ACKNOWLEDGMENTS
The authors would like to thank Universitas Sumatera Utara for the support of this study provided by TALENTA (contract number 11119/UN5.1. R/PPM/2022). We are also very grateful for all the facilities in accomplishing this study presented by the National Research and Innovation Agency.

CONFLICT OF INTERESTS
There is no conflict of interest, according to the authors.

AUTHOR CONTRIBUTIONS
All the authors contributed from reviewing to finishing this manuscript. The research profile of the authors can be verified from their ORCID IDs below:
Nur Aini Khairunnisa https://orcid.org/0000-0001-6760-4480
Yuandani https://orcid.org/0000-0003-0211-3781
Abdi Wira Septama https://orcid.org/0000-0002-6471-7735
Sony Eka Nugraha https://orcid.org/0000-0001-8849-2481
Sufitni https://orcid.org/0009-0001-1144-1325

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

REFERENCES

[RJC- 8442/2023]